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Lissencephaly, which means ‘smooth cortex’, is caused by
defective neuronal migration during development of the
cerebral cortex and has devastating clinical consequences.
‘Classical’ lissencephaly seems to reflect mutations in
regulators of the microtubule cytoskeleton, whereas
‘cobblestone’ lissencephaly is caused by mutations in genes
needed for the integrity of the basal lamina of the central
nervous system. Reelin, which is mutated in a third type of
lissencephaly, may represent a unifying link because it encodes
an extracellular protein that regulates neuronal migration and
may also regulate the microtubule cytoskeleton.
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Abbreviations
ApoER2 ApoE receptor 2
CNR cadherin-related neuronal receptor
DCX X-linked doublecortin
ECM extracellular matrix
FCMD Fukuyama-type congenital muscular dystrophy
FKRP Fukutin-related protein
LCH lissencephaly with cerebellar hypoplasia
LDL low-density lipoprotein
MEB muscle–eye–brain 
Nud nuclear distribution locus
VLDLR very low-density lipoprotein receptor
WWS Walker–Warburg syndrome

Introduction
The human cerebral cortex is a highly folded sheet of six
neuronal layers, each with characteristic histological and
functional properties. These six layers are set up during
embryonic development by the migration of neurons from
the proliferative ventricular zone near the middle of the brain
to the developing cortical layers near the surface (Figure 1a).
At least 25 different human syndromes have been identified
that disrupt this normal architecture and, with the increasing
use of magnetic resonance imaging as a neurological 
diagnostic tool, this number is certain to increase [1].

A relatively common (~1 in 100,000 live births) congenital
cortical disorder known as ‘lissencephaly’ is recognized by
disruptions of the normal folding pattern of the cortex. At a
microscopic level, lissencephaly is a surprisingly diverse 
disorder, although all lissencephalies share abnormalities of
neuronal migration and the laminar architecture of the 
cortex. Lissencephaly syndromes also vary greatly in both
severity in the neocortex and the involvement of other
regions of the central nervous system, including the cerebellum,
hippocampus and brain stem [2]. Our understanding of 

different lissencephaly syndromes is increasing rapidly with
the emergence of greater clinical use of magnetic resonance
imaging coupled with improved tools for human genetics.
This review highlights some of the recent advances in the
field of cortical development, focusing on the genes under-
lying human lissencephaly.

Classical lissencephaly is caused by genes
that regulate microtubules 
The importance of microtubule organization and dynamics
to neuronal migration is underlined by two loci that cause
‘classical’ lissencephaly, LIS1 and DCX. Hemizygous
mutations in the X-linked doublecortin gene (DCX) [3,4]
or heterozygous mutations in LIS1 [5] produce similar
abnormalities. The classical lissencephalic brain is charac-
terized by a nearly complete absence of gyri (the technical
term for the cortical folds), a severely thickened, histo-
logically abnormal, four- layered cortex, and enlarged 
ventricles (Figures 1e and 2e).

Although subtle differences between LIS1 and DCX
deficiency have been defined recently [6], these two genes
both encode microtubule-associated proteins that are likely
to function in the same biochemical pathway (Figure 3a)
and that seem to interact physically [7•]. DCX encodes a
novel microtubule-associated protein with a microtubule
stabilizing function in vitro [8–10], whereas LIS1 encodes
PAFAH1b1 — a subunit of platelet-activating factor acetyl
hydrolase [11], which also binds microtubules [12]. LIS1 is
homologous to NudF, a nuclear distribution locus (Nud) in
the fungus Aspergillus nidulans, which is required for the
distribution of nuclei along the multinucleate hyphae [13].

Intriguingly, the LIS1 protein interacts with the mammalian
homologs of other Nud proteins (Figure 3a), including
NudE [14•–17•] and NudC [18•]. This evolutionarily 
conserved complex [19•] seems to regulate microtubule
dynamics by interacting with centrosomal components
including γ-tubulin [15•] and the retrograde microtubule-
based motor dynein (Figure 3a) [20,21]. Although several
Lis1 functions have been identified [22,23], we remain
mostly in the dark about the exact microtubule-based
functions that the LIS1 protein complexes perform during
the development of cortical layers, as well as the upstream
signaling pathways that regulate them.

Cobblestone lissencephaly reflects abnormal
extracellular matrix and basal lamina 
A second form of lissencephaly, which was originally
referred to as type II lissencephaly but is now called 
cobblestone cortex [2], results when neurons or neuronal
precursors migrate out of the developing brain through
breaches in the superficial neural basal lamina (Figures 1d
and 2f). This aberrant migration produces bumpy neuronal

Smooth, rough and upside-down neocortical development
Eric C Olson and Christopher A Walsh



Smooth, rough and upside-down neocortical development Olson and Walsh    321

‘cobblestones’ (ectopia) on the surface of the brain and 
is a feature of three distinct human disorders. Muscle–
eye–brain (MEB) disease, Fukuyama-type muscular 
dystrophy (FCMD) and Walker–Warburg syndrome
(WWS) are autosomal recessive disorders that encompass
congenital muscular dystrophy, ocular malformations and 
cobblestone lissencephaly. 

A specific allele of Fukutin, which is a predicted glycoprotein
or glycolipid-modifying enzyme (Figure 3b) [24], underlies
most cases of FCMD [25]; by contrast, MEB has been
shown recently to be caused by mutations in POMGnT1, the
gene encoding O-mannosyl-β-1,2-N-acetylglucosaminyl-
transferase [26••]. POMGnT1 may glycosylate α-dystroglycan
(Figure 3b), and this novel O-mannosyl glycosylation may

Figure 1
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Histological defects of the neocortex that underlie different forms of
lissencephaly. (a) Radial neuronal migration during cortical
development. Neurons (solid green cells) migrate on a specialized
elongated cell — the radial glial cell (solid blue cell) that spans the
whole cortical wall from the ventricular zone (VZ) to the basal lamina
(BL) of the pial surface, where the specialized glial endfeet terminate.
Neurons migrate from the proliferative ventricular zone through the
fiber-rich intermediate zone (IZ) into the developing cortical plate (CP).
The process of migration here is understood poorly, but neurons arrest
migration at the top of the cortical plate, immediately beneath the
marginal zone (MZ) and the Reelin-expressing Cajal-Retzius cells
(shown in solid red). Because newer layers of the cortical plate are
added on top of older layers, this development is known as ‘inside-out’.
(b) The normal mammalian neocortex comprises six cellular layers
overlying a band of white matter (WM). The cortical plate (green cells,
layers 2–6) is sandwiched between layer 1 (upper red cells) and the

subplate (SP; lower red cells). (c) Analysis of reeler mouse cortex
shows that the cortical plate (green) develops beneath the subplate
(now known as the superplate [SuP]). In addition, the cellular layering
of the cortical plate is approximately inverted. In the reeler mouse the
horizontally oriented Cajal-Retzius cells in the marginal zone (hatched
red cells) do not express Reelin, a large secreted protein.
(d) Description of cobblestone (CS) lissencephaly showing its two
essential features: first, the basal lamina (gray line above layer 1) is
broken; second, neurons have migrated through the breach and
formed ectopic bumps on the surface of the brain. (e) Representation
of classical lissencephalic cortex arising from a hemizygous X-lined
doublecortin (DCX) mutation or heterozygous LIS1 mutations shows a
markedly thickened and simplified cortex with alternating bands of cell-
sparse layers (1′ and 3′) and cell-dense layers (2′ and 4′). As the
identity of these layers is not known the cells are shaded gray. In
addition, the white matter is reduced. 
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be required for α-dystroglycan binding to laminin, an 
extracellular matrix (ECM) protein [27]. 

Although Fukutin itself has not been shown to have 
enzymatic activity, the recently described Fukutin-related
protein (FKRP) is a glycosyltransferase [28••], and individuals
affected with FCMD have a deficiency in highly glycosy-
lated α-dystroglycan [29••]. Therefore, both MEB and
FCMD may be caused by a deficiency in the glycosylation
of specific target proteins, including α-dystroglycan, which
leads to a secondary deficiency in the basal lamina 
surrounding the developing brain. The cause of WWS is
not known, but a recent analysis of 19 families with either
WWS or MEB has indicated that these are distinct genetic
and clinical disorders [30]. 

Normal mouse brain lacks gyri, so technically there are no
murine lissencephaly loci. But some mouse mutants do
show cortical migration defects with deficiencies in basal
lamina integrity and also superficial bumps of neurons
analogous to the cobblestone cortex observed in humans.
Mice deficient in the laminin receptor, α6 integrin [31], or
in the ECM proteoglycan perlecan [32] show similar basal
lamina breaches in the cortex and aberrant neuronal migra-
tion. The α6 integrin phenotype can be exacerbated by
mutations in another laminin receptor, α3 integrin [33],
which strongly implicates laminin-binding integrins in
basal lamina integrity. 

Studies with knockout lines of embryonic stem cells have
shown that α-dystroglycan initially binds laminin to the
surface of the cell and that integrins and perlecan are
required for the subsequent assembly of laminins into
large clusters [34•]. Cobblestone lissencephaly loci in mice
and man may therefore identify steps in a common path-
way that is needed for the correct assembly of laminin
clusters in the neural basal lamina (Figure 3b). Little is
known, however, about the structure of the basal lamina in
the cortex, whether these basal lamina components and
receptors act passively to organize neuronal precursors
and/or to restrain migrating neurons, or whether these
basal lamina components are dynamic and have active
roles in signaling.

Reelin mutations in man and mice
Yet another form of lissencephaly is caused by mutations in
the Reelin gene (RELN), and Reelin may represent a crit-
ical link that begins to connect the ECM with cytoskeletal
regulation. Mutations in Reelin cause lissencephaly with
cerebellar hypoplasia (LCH) in which the affected 
individuals show simplified cortical folding (pachygyria;
compare Figure 2b,d with Figure 2a,c), which seems less
severe than the near-complete lack of folding (agyria)
caused by LIS1 or DCX deficiency [35•]. Surprisingly, the
cerebellum in LCH is much more severely affected
(arrows, Figure 2c,d) than in classical lissencephaly, and
individuals with LCH are severely ataxic, mentally retarded
and suffer from epilepsy [36]. 

The human RELN gene is the ortholog of the extensively
studied Reln gene in mice, which is mutated in the 

Figure 2

Magnetic resonance images of different lissencephaly syndromes with
identified genetic causes. (a–d) Normal brains (a,c) show
characteristic neocortical folding (gyri), which is simplified in the brains
of individuals affected by mutations in Reelin (red arrows in b,d), who
have lissencephaly with cerebellar hypoplasia (LCH). (e) Males
hemizygous for mutations in X-linked Doublecortin (DCX) show
classical lissencephaly, which is very similar to lissencephaly produced
by autosomal dominant mutations in LIS1 (not shown). Classical
lissencephaly shows more severe agyria than LCH, a markedly
thickened cortex (red arrows in [a,e]) and reduced white matter 
(green arrows in [a,e]). As in most lissencephalies, individuals with the
DCX mutation show enlarged ventricles (yellow arrows in [a,e]). In
addition to neocortical defects, individuals with LCH have a marked
reduction in the size of the cerebellum (compare arrows in [c] and [d]).
(f) Cobblestone (CS) lissencephaly is caused by POMGnT1 or
Fukutin mutations and is characterized by bumps of superficial ectopic
neurons on the surface of the brain that are not normally resolved by
magnetic resonance imaging. Radiographic findings of cobblestone
lissencephaly show typically enlarged ventricles (yellow arrow) and
reduced, aberrant white matter (green arrow). The term ‘cobblestone
cortex’ is used increasingly to describe these cerebral disorders,
because in many affected brains, such as this one, the cortex still has
significant cortical folding (gyri and sulci). Panels (a–d) are reprinted
with permission from [35•].
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naturally occurring neurological mutant reeler [37,38]. 
Reeler mice, which are named after their reeling gait, show
abnormal cellular layering in the neocortex (Figure 1c),
cerebellum and hippocampus. Although the histology of
affected humans has not been characterized, the existence
of pachygyria in these people strongly suggests that they
have layering abnormalities. Thus, humans deficient in
Reelin seem to share all of the main anatomical features of
reeler mice. 

Potential interactions between Reelin and ECM receptors
Given the involvement of integrins and integrin ligands in
cobblestone cortex, it is intriguing that there are links
between Reelin and integrins. Integrins comprise a large
class of heterodimeric ECM receptors that consist of one α
and one β subunit. Mice deficient in α3β1 integrin show 
misregulation of Reelin protein and an excess of a 180-kDa
amino-terminal fragment, which suggests that integrins 
may regulate proteolysis or clearance of Reelin [39•].
Immunoprecipitation studies indicate that α3β1 integrin can
bind Reelin and in vitro migration assays suggest that this
binding may regulate the adhesion of neurons to glia [39•].
Recombinant Reelin induces migrating neurons to detach
from radial glial cells in vitro, as do function-blocking 
antibodies against β1 integrin [40]. This suggests that
Reelin-dependent inhibition of integrin function may be
required to detach the migrating neuron from the glial fiber. 

When β1 integrin is removed from the developing brain in
a neural specific knockout mouse model [41••], the cortex
shows abnormal clusters of Cajal-Retzius cells and a disor-
dered cortical plate that is reminiscent of cobblestone
cortex; however, unlike cobblestone cortex the neural spe-
cific β1 integrin knockout does not show superficial bumps
of ectopic neurons. Nor does the neural specific knockout
show an obvious deficiency in neuron adhesion to the glia,
because neurons migrate from the ventricular zone and
form a ‘wavy’ but otherwise normally layered cortical plate.
The neural specific knockouts of β1 integrin show aberrant
radial glial morphology [41••] as do reeler mice [42], which
highlights a role for β1 integrins in radial glial attachment
to the neural basal lamina and in maintaining or remodel-
ing of the basal lamina. Thus, although there are intriguing
links between integrins, the basement membrane and the
radial glial fiber, the precise mechanisms of Reelin integrin
interaction is still not understood fully.

Potential Reelin signaling to the microtubule cytoskeleton
Recent work has identified a novel signaling pathway 
initiated by Reelin, and deficiency in several members of
this pathway cause disorders of neuronal migration in
mice. Reelin is predicted to be a 388 kDa secreted protein
that is expressed strongly during corticogenesis by the
Cajal-Retzius cells (Figure 1a, solid red cells) in the 
marginal zone adjacent to where new neuronal layers form
[37,38]. Native Reelin forms a complex [43], and Reelin
multi-merization may be required to initiate Reelin signal-
ing. The antibody CR50, which blocks the function of

Figure 3

Possible biochemical interactions between neuronal migration proteins.
(a) Reelin initiates signaling by binding protocadherins (CNRs) and
members of the LDL superfamily (ApoER2 and VLDLR). Reelin binding
may bring the cytoplasmic adaptor Dab1 into proximity with a non-
receptor tyrosine kinase, possibly Fyn. Phosphorylated Dab1 may
directly or indirectly regulate the serine/threonine kinase activity of
p35/cdk5. Presumably cdk5 is regulated by other upstream cues as
well as Reelin, and cdk5 phosphorylates several microtubule-binding
proteins including tau and NudE to regulate the stability of
microtubules. Reelin may also modulate neuron glial adhesion through
interactions with the α3β1 integrin and CNRs. (b) Diagram of a pathway
that is essential for normal neural basal lamina structure and that may
be perturbed in cobblestone lissencephaly. POMGnT1, the O-mannosyl
glycosylase underlying muscle eye brain disease may glycosylate
α-dystroglycan (α-dyst), which in turn permits the binding of laminin.
Fukutin, a predicted glycosylase that is predicted to underly Fukayama-
type muscular dystrophy, may perform a similar function and glycosylate
α-dystroglycan. After the initial binding of laminins to dystroglycan,
integrins and perlecan may facilitate the formation of larger laminin
clusters that are required for normal basal lamina structure. The
subcellular localization of Fukutin and POMGnT1 has not been
characterized but is likely to be intracellular.
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Reelin [44], specifically prevents Reelin multimerization
[43]. Surprising new evidence shows that Reelin also has a
serine protease enzymatic activity that cleaves laminin and
fibronectin in vitro [45], raising the possibility that Reelin
may modify the basal lamina directly. Reelin is itself
processed proteolytically by an unknown zinc-dependent
protease [46] but the activity of the resulting Reelin 
fragments is unknown.

To initiate signaling, Reelin binds members of the LDL
receptor superfamily (ApoER2 and VLDLR) [47,48,49•]
and members of the protocadherin superfamily (CNR1 to
CNR8) [50•]. Complex formation leads to tyrosine phos-
phorylation of a cytoplasmic adapter protein Dab1 [51•] that
is bound to the cytoplasmic tail of ApoER2 and VLDLR
(Figure 3a). The brains of mice lacking both VLDLR and
ApoER2 [49•], or Dab1 [52–54], are histologically indistin-
guishable from those of reeler mice (Figure 1b). 

Downstream of the Reelin–receptor complex, the elements
of the Reelin signaling pathway are less clear. Non-receptor
tyrosine kinases phosphorylate Dab1 in vitro [55].
Although this phosphorylation is essential for Reelin 
signaling [56•], the identity of the specific kinase is
unclear. One candidate kinase, Fyn binds protocadherins
[57]; therefore, Reelin crosslinking of LDL receptors and
protocadherins might directly assemble a phosphorylation
complex (Figure 3a). In addition, LDL receptors bind the
JNK-interacting proteins 1 and 2 [58•] — scaffold proteins
that potentially link the Reelin receptors to mitogen-
activated protein kinase pathways and to the microtubule
motor kinesin [59•]. 

On the basis of phenotypic similarity, a probable component
of the Reelin signaling pathway is the serine/threonine
kinase cdk5 [60] and its activator p35 [61]. Mice that lack
either cdk5 or p35 show inversions of cortical layering that
are similar but not identical to the reeler phenotype, and
studies with compound mutants of p35 and Dab1 indicate
some genetic interaction [62•]. Because the many substrates
of cdk5 include the Lis1-interacting protein NudEL [16•],
as well as the microtubule-associated protein tau, cdk5
might connect Reelin signaling with other lissencephaly
protein complexes such as the NudEL–Lis1 complex to
control microtubule dynamics (Figure 3a). Notably, in reeler
mice, or in mice lacking both LDL receptors, tau is hyper-
phosphorylated at two cdk5 sites [48], which suggests a link
between Reelin, cdk5 and the microtubule cytoskeleton.
Although a great deal of work remains to be done, the pos-
sibility of integrating many different neuronal migration
proteins into a common pathway seems within reach. 

Conclusions
The current catalog of neuronal migration mutants in mice
and humans already presents a dizzying variety and is
expanding rapidly. Although new mechanisms and path-
ways are likely to be discovered in the long term, in the
short term further understanding of lissencephaly will

come when the cell biology of Reelin, cdk5, and Lis1 
signaling is more clearly described, and when the structure of
the basal lamina of the developing cerebral cortex is clarified.

Update
A recent published study, using transgenic animals that
express Reelin ectopically, suggests that appropriate
Reelin localization may not be essential for the early 
development of the cortex [63•]. This study argues against
simple models of Reelin signaling where Reelin acts either
as an inhibitor or as an attractant to migrating neurons.

A second recent study showed that a splice variant of Dab1
called p45 can rescue Reelin–Dab1 signaling. However,
unlike the wild-type allele p80, the p45 allele is haploin-
sufficient and neocortical and hippocampal disruptions are
observed in the p45 heterozygote. The presence of 
later-born cortical neurons in the marginal zone of these
p45 heterozygote animals supports the idea that Reelin
signaling may be required for arresting some migrating 
cortical neurons [64•].
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