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As MR imaging technology improves and be- multiple affected offspring. This article provides an
comes more widely used, the neuroradiologist is faced

with an ever-increasing diversity of congenital brain

malformations. Historically, many of these conditions

were not regarded as genetic because parents of af-

fected patients are not usually affected. Several recent

developments, however, have shown that a large

proportion of congenital malformations of the cortex

are indeed caused by mutations in specific genes. The

paradox of genetic causation in the absence of obvious

genetic inheritance is resolved by consideration of

the specific modes of genetic transmission of cerebral

cortical malformations. For genes that act in dominant

or X-linked fashion, in which a single mutant copy of

a gene can cause a phenotype, the importance of

de novo mutations, that are present in a child but

not in the parents, is now understood. Moreover, there

is an increasing recognition of subtle defects in

cortical development, often with mild radiographic

findings and mild clinical symptoms, which can be

present in parents of more severely affected children.

Finally, an increasing number of cortical malforma-

tions are ascribed to the action of recessive genes, for

which both parents are asymptomatic carriers, but for

which the family size is often too small to manifest
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overview of major cerebral cortical malformations,

focusing on the genetic mechanisms of their causa-

tion, and is intended to complement other articles in

this volume that address the radiographic findings of

congenital cortical malformations.
Classification

The classification of cortical malformations con-

tinues to evolve as knowledge of these disorders

grows. Early schemes relied on pathologic and radio-

graphic findings. More recent classifications have

taken genetics into account [1]. Attempts to combine

all aspects into a single classification system have not

been completely successful. One part of the difficulty

is the great heterogeneity of cortical malformations.

A given gene defect can cause different phenotypic

expressions. Likewise, a single phenotype may have

multiple gene abnormalities associated with it. Such

heterogeneity makes it difficult to give equal weight

to all aspects of these disorders.

This article arranges cortical malformations ac-

cording to the earliest embryologic stage in which

the abnormality has its origin [1], although the stages

of cortical development overlap in time and lack

discrete boundaries. Moreover, some gene defects

seem to exert influence in more than one develop-

mental stage. Thus, the classification system pre-

sented here is not a final, definitive scheme and will

undoubtedly be modified as knowledge of these con-

ditions grows.
s reserved.
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Importance of embryology

Knowledge of embryology allows a perspective of

where each malformation fits within the entire spec-

trum. Brain development begins in the third and

fourth weeks of gestation with neurulation, the pro-

cess of brain and spinal cord formation from the

dorsal aspect of the embryo. In the fifth and sixth

weeks, pattern formation, the process by which the

brain takes shape, begins with prosencephalic devel-

opment. In humans, cortical formation spans weeks

8 to 24 of gestation [2] and can be divided into stages

of cell proliferation (when both neural and glial

precursor cells are generated), neuronal migration

(when cells travel from the proliferative zone to their

designated destination), and cortical organization

(when cell networks are determined) [1,3]. Myeli-

nation is the final step of brain development and

continues well beyond birth [4]. These events occur

in only rough sequence because different stages take

place concurrently. Moreover, abnormalities of corti-

cal development can result from impairments of more

than one stage. It is nevertheless helpful to define

stages for the purpose of classification. Abnormalities

of cortical formation are the focus of this article.
Disorders of neural proliferation

Neural proliferation takes place between the sec-

ond and fourth months of gestation. Radial glial cells,

which play a critical role in neuronal migration [5]

and which have recently been shown to represent the

immediate progenitor cells for neurons [6–8], are

also formed at this time. Neurons and glia have their

origin in the ventricular and subventricular zones. In

the earliest phases of neural proliferation, neuronal-

glial stem cells predominantly divide to form further

stem cells [9,10]. Later, stem cell division becomes

asymmetric so that one daughter cell is postmitotic

whereas the other remains a stem cell. Eventually,

fewer and fewer stem cells are produced, and the

proliferative region is progressively depleted [11,12].

Abnormal proliferation of neuronal progenitor cells

may result in conditions characterized by too many or

too few neurons.

Decreased proliferation

Congenital microcephaly

Congenital microcephaly is diagnosed when the

head circumference is 3 or more SD below normal

without evidence of in utero injury [13]. It is an ex-

tremely heterogeneous condition etiologically, be-
cause it can be caused by a host of environmental

factors (eg, hypoxic-ischemic encephalopathy), or

degenerative conditions. Now, however, a number of

genetic causes of congenital microcephaly are re-

cognized that present with a static picture and that

reflect inadequate formation or survival of cerebral

cortical neurons.

Most of the genetic forms of congenital micro-

cephaly are inherited in recessive fashion, and in the

past few years several genetic loci for recessive micro-

cephaly have been mapped or cloned [14–23]. The

most common genetic cause seems to be microceph-

aly 5 (MCPH5), caused by mutations in a gene called

ASPM (abnormal spindle-microcephaly) [24]. Most

patients with identified mutations are from Pakistan,

and the prevalence of ASPM mutations in European

and American populations is not known. These ge-

netic forms of microcephaly usually present radio-

graphically with a generalized simplification of the

gyral pattern without gross gyral disruption. The ex-

tent to which the distinct genetic loci may have dif-

ferent radiographic patterns has not been investigated.

Microcephaly can also be associated with se-

verely abnormal gyral patterns. Microcephaly with the

most extensive gyral abnormalities is referred to as

microlissencephaly [25,26], whereas milder gyral ab-

normalities are referred to as microcephaly with

simplified gyral pattern [27,28]. These disorders have

a much more severe clinical course than microcephaly

alone. Seizures and global developmental delays are

uniformly present, and the condition is often fatal in

the neonatal period. The genetics of these conditions

are not well established, but recessive genes are prob-

ably involved [27].

Disordered proliferation

Hemimegalencephaly

When unilateral enlargement of just one cerebral

hemisphere exists, the condition is termed hemime-

galencephaly. This condition has never been reported

to be inherited, although its pathologic appearance

suggests the abnormal action of genes involved in

proliferation and differentiation [29,30]. Speculation

about its cause focuses on somatic mutations of mi-

totic brain progenitor cells, in a fashion analogous to

the de novo somatic mutations that cause spontane-

ous tumors in other tissues later in life. No firm evid-

ence about mechanism is available, however. It may

well result when a disturbance of cellular differentia-

tion and proliferation interacts with the genetic ex-

pression of body symmetry [30]. In addition to

increased size of the affected hemisphere, neuroimag-

ing may reveal abnormal gyration, ventriculomeg-
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aly, colpocephaly, displacement of the occipital lobe

across the midline, and increased T2 signal of the

white matter [29,30]. Histology reveals disorganized

cortical lamination, dysmorphic neurons, and sub-

cortical heterotopia [29–31]. Large, dysmorphic neu-

rons, termed balloon neurons, are seen. The opposite

hemisphere may be normal or have mild dysplasia

and heterotopia [30]. All patients have epilepsy,

which is often intractable, and most have mental

retardation [30]. Hemispherectomy is often required

for the management of intractable epilepsy [32].

Abnormal neuronal differentiation/maturation

Tuberous sclerosis complex

Tuberous sclerosis complex (TSC) is a dominantly

inherited, multisystem condition with a high rate of

spontaneous mutations, so that about half of all

affected patients have unaffected parents. It primarily

affects the kidney, skin, and central nervous system

where tumors, cysts, and hamartomas occur [33]. In

the brain, the characteristic features include cortical

hamartomas (cortical tubers), subependymal hamar-

tomas (subependymal nodules), and giant cell astro-

cytomas [33]. Cortical tubers are firm and nodular,

with a consistency resembling the potato tubers for

which they are named. Microscopically, they dem-

onstrate disorganized lamination within which are

dysmorphic neurons possessing abnormal dendritic

arborization and spine density [2]. Balloon neu-

rons are also present. Beneath the cortex, nodular,

periventricular collections of small cells exist and are

termed subependymal nodules. In some instances,

they transform into subependymal giant cell astrocy-

tomas [34].

On MR imaging, cortical tubers appear as en-

larged, atypically shaped gyri with abnormal signal

intensity in the subcortical white matter. In neonates,

subependymal nodules are hyperintense to white

matter on T1-weighted imaging. In adults, they are

isointense. Enhancement following the administration

of intravenous contrast is variable [35].

Hamartomas of TSC likely arise by the two-hit

tumor suppresser gene model first proposed by

Knudson [36] for retinoblastoma. The afflicted indi-

vidual inherits a germ-line TSC mutation from one

parent. When this mutation is combined with the

spontaneous loss of a second TSC allele, hamartomas

or other tumors result. This model does not neces-

sarily hold true for cortical tubers and subependymal

nodules, because there is no evidence for loss of

the second TSC allele in these lesions [37,38]. A

second event may account for their appearance, given
their focal distribution, but the nature of that event

remains uncertain.

Two genes have been cloned for TSC; both result

in similar clinical and anatomic features. The TSC1

gene located at chromosome 9q34 codes for a novel

protein called hamartin, which indirectly links the cell

membrane to the cytoskeleton [39,40]. TSC2, located

at chromosome 16p13.3, encodes for the protein

tuberin, which may function in cellular signaling

pathways [41]. Hamartin and tuberin interact as part

of a larger protein complex [39].

Focal cortical dysplasia

Focal cortical dysplasia (FCD), as described by

Taylor et al [42], strongly resemble the cortical tu-

bers of TSC. Macroscopically, the lesions display

wider-than-normal gyri and blurring of the gray–

white junction [43]. Microscopic findings include

disordered cortical lamination with dysplastic, cyto-

megalic-appearing neurons and balloon cells. The

underlying white matter is hypomyelinated and con-

tains radially oriented balloon cells [43,44]. MR imag-

ing shows the lesions to be slightly hyperintense on

T2-weighted sequences. The hyperintense regions

have a funnel-shaped appearance, with the base of

the funnel oriented toward the pial surface, and the tip

extending to the white matter. Because seizures result-

ing from FCD are commonly refractory to pharmaco-

therapy, surgical resection is often required and may

even be curative.

The histology of FCD resembles tuberous sclero-

sis to such a large extent that they have been

postulated to be the same entity, with FCD represent-

ing a forme fruste of TSC [45]. Although patients

with FCD do not demonstrate the cutaneous and other

systemic manifestations of TSC, FCD show an in-

crease in TSC1 polymorphisms and loss of heterozy-

gosity at the TSC1 locus [46]. The same alterations

are associated with TSC, suggesting a common path-

way in the development of these two disorders.

Schizencephaly

Schizencephaly is characterized by a cleft extend-

ing between the pial and lateral ventricular surfaces.

The term was introduced in 1946 by Yakovlev and

Waldsworth [47] to distinguish this malformative

lesion from destructive disorders with a similar ap-

pearance (ie, porencephaly). Lining the cleft on both

sides are abnormally small gyri, termed polymicrogy-

ria. Schizencephaly is clinically heterogeneous [48]. It

can be unilateral or bilateral; bilateral cases are more

commonly associated with other cortical abnormali-

ties. The clinical severity relates to the degree of

structural involvement. Unilateral clefts commonly
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present with hemiparesis and mild, if any, cognitive

delay. Bilateral clefts, on the other hand, are associ-

ated with quadriparesis and significant cognitive im-

pairment [48]. The severity of epilepsy is generally

unrelated to the structural findings, however [49].

Possible causes are similarly heterogeneous. En-

vironmental factors, such as fetal hypotension, expo-

sure to organic solvents, and viral infections, may be

causative [48]. Vascular anomalies have also been

reported in association with schizencephaly [48].

Familial cases exist, indicating a genetic mechanism

in some instances. In 1996, Brunelli et al [50] reported

heterozygous mutations in the homeobox gene EMX2

in seven sporadic cases. The same group later reported

two brothers with the same EMX2 deletion and

different degrees of schizencephaly [51]. The authors

postulate that although the gene mutation is causa-

tive, environmental factors may affect severity, and

the utility of genetic testing in this condition is uncer-

tain [52].

Disorders of neuronal migration

Migration takes place between the third and fifth

months of gestation, during which time postmitotic

neurons move from the ventricular and subventricular

layers to their final sites within the cerebral cortex.

Migration occurs in radial (perpendicular to the pial

surface) and tangential (parallel to the pial surface)

fashions [53]. Tangentially migrating neurons are

more likely to become interneurons, whereas radially

migrating neurons become projection neurons.

The radial glial cells seem to serve as a guide for

radially migrating neurons [5], although nonradial

forms of migration do not seem to depend upon radial

glia. The earliest born neurons organize into a collec-

tion termed the preplate [54]. Later neuronal popula-

tions, known as cortical plate neurons, deposit in the

preplate, dividing it into an outer marginal zone (just

beneath the pial surface) and a deeper subplate layer

[55]. Cortical plate neurons migrate in an inside-out

fashion [56]. The first neurons to migrate occupy the

deepest positions within the cortex, and those migrat-

ing later must squeeze past the earlier neurons to

occupy a more superficial location facing the marginal

zone [9]. A host of molecular determinants are nec-

essary for the process to occur successfully.

Heterotopia

Heterotopia are collections of normal nerve cells

in an abnormal location. It can be argued that all

disorders of neuronal migration are heterotopia, but in

practice the term refers only to conditions in which

the ectopic neurons are located somewhere other than
cortex [57]. Unlike cortical dysplasia, the neurons

within heterotopia usually appear normal and have

normal MR imaging signal characteristics. Thus, on

imaging, heterotopia are isointense with normal gray

matter, lacking the abnormal signal intensity seen in

dysplasia. Because of the arrest in migration, the

cortex overlying heterotopia may be abnormally thin

with shallow sulci [57].

Familial periventricular heterotopia. Familial peri-

ventricular heterotopia (PH)—also known as sub-

ependymal nodular heterotopia—are characterized by

periventricular nodules of neurons resting beneath an

otherwise normal-appearing cortex [58,59]. The nod-

ules are rounded, irregular, and separated from each

other by myelinated fibers. In PH, some neurons

migrate fully to form a normal-appearing six-layer

cortex, whereas others fail completely to migrate and

remain in nodular collections within the subependy-

mal region. The cortex functions surprisingly well,

and most patients have normal intelligence [57,60].

Epilepsy, however, is common. It ranges from mild to

severe and generally develops in the mid-teenage

years [58]. Familial PH commonly displays X-linked

dominant inheritance and is lethal in hemizygous

male embryos [58]. At least half of affected patients

have a de novo mutation not present in the parents

[61]. In additional cases, a family history of the

malformation (typically in the mother) is revealed

only by MR imaging analysis, because one quarter or

more of patients with the malformation have mild or

absent seizures and few other signs or symptoms. PH

most often results from a mutation of the filamin A

(FLNA) gene on chromosome Xq28 [60]. FLNA

encodes a large actin binding protein that aids in

the structuring of actin networks at the leading edge

of motile cells [62]. In doing so, FLNA is necessary

for migration of neurons and other cell types includ-

ing macrophages [63] and melanocytes [64]. It also

plays a role in coagulation and vascular development;

disruption of these functions probably accounts for

male lethality [60].

In PH, only some of the neurons demonstrate a

failure of migration; others go on to form a normal six-

layered cortex. Originally the differing behavior was

attributed to genetic mosaicism from random X-inac-

tivation. Males with PH from FLNA mutations have

been described [61], however, evidence that speaks

strongly against X-inactivation as the basis for the

divergent behavior of neurons in PH. The highly

homologous protein, filamin B (FLNB), may help

compensate for the loss of FLNA function and allow

for proper neuronal migration of some neurons [65].
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Autosomal recessive periventricular heterotopia. In

a small minority of patients, PH displays autosomal

recessive inheritance. Two pedigrees have been de-

scribed in which the affected members did not

demonstrate any association with FLNA or FLNB

mutations, suggesting a distinct genetic mechanism

in these families [66]. The gene for this autosomal

recessive form of PH has recently been mapped

and cloned, and encodes a guanosine triphosphate

(GTP)ase exchange factor (ARFGEF2) that is in-

volved in vesicle transport through the Golgi appa-

ratus [67]. How the mechanism of action of the

ARFGEF2 protein might relate to the action of FLNA,

or whether the two proteins have similar mechanisms,

is not known. Additional genes exist for other forms

of PH, and remain to be identified [68].

Lissencephaly

Lissencephaly means ‘‘smooth brain,’’ referring to

a paucity of normal gyri and sulci. Agyria, also termed

complete lissencephaly, describes a total absence of

gyri, whereas pachygyria, or incomplete lissence-

phaly, is defined as a reduced number of abnormally

flat and broad gyri. Lissencephaly is heterogeneous in

its histology, etiology, radiographic appearance, and

clinical features. It is traditionally divided into two

pathologic subtypes: classic, or type I, and cobble-

stone, type II, lissencephaly. Radiographically, the

cortex appears smooth in both types, but otherwise

few similarities exist. Classic lissencephaly results

from an arrest of neuronal migration, whereas cob-

blestone lissencephaly develops from overmigration.

In either case, lissencephaly is generally associated

with epilepsy and severe developmental delay.

Classic lissencephaly (agyria-pachygyria com-

plex). Most patients with classic (type I) lissence-

phaly have a combination of both agyria and

pachygyria. The clinical severity is largely related to

the degree of structural abnormality, with greater gyral

simplification resulting in greater clinical impairment.

Radiographically, patients with agyria have a smooth

brain surface with diminished white matter and shal-

low sylvian fissures [1,69]. In pachygyria, a reduced

number of abnormally broad and flat gyri are seen

[69]. Microscopically, areas of agyria demonstrate an

outer, cell-sparse layer, then a thin neuronal layer,

another cell-sparse zone, and then a thick layer of

ectopic neurons, with the neurons arranged in no

obvious relationship to the six layers that characterize

the normal cortex [70]. By contrast, pachygyria dis-

plays better cortical organization, although the normal

six layers are also frequently obscured.
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LIS1 mutations and classic lissencephaly. Classic

lissencephaly is most commonly caused by a disrup-

tion of the platelet-activating factor acetylhydrolase

gene (PAFAH1B1; also known as LIS1) located on

chromosome 17p13 [71]. Virtually all patients have

spontaneous, heterozygous deletions of LIS1 that are

not present in the parents, and the risk of having a

second affected child is low. When a large deletion

occurs, other congenital anomalies can result and

together are termed the Miller-Dieker syndrome

[70]. Because LIS1 is an autosomal gene, each indi-

vidual has two inherited copies, but a deletion of just

one copy causes lissencephaly, indicating haploinsuf-

ficiency. That is, a 50% reduction in the LIS1 protein

is sufficient to account for the disorder. A homozy-

gous deletion, on the other hand, is thought to be

incompatible with life, as is the case in mice and

Drosophila [72,73]. Thus, LIS1 has widespread es-

sential functions. Its localized effect on brain devel-

opment in the heterozygous state indicates that

neurons are more dependent on LIS1 than other cell

types. Consistent with this notion, LIS1 is highly

expressed by migrating neurons during brain devel-

opment [74]. LIS1 is also believed to interact with the

microtubule motor cytoplasmic dynein [75–77]. In

doing so, it may be involved in dendritic formation,

axonal transport, and mitosis. A delay in mitosis and

the resulting disruption in timing of neuronal prolif-

eration may indirectly account for the disturbance in

neuronal migration [78]. The precise cause of the

human malformation is still not completely under-

stood, however.

X-linked lissencephaly and subcortical band hetero-

topia. Another gene known to cause classical lis-

sencephaly is doublecortin (DCX), located on the

X chromosome [79,80]. In hemizygous males, the

phenotype is nearly indistinguishable from LIS1. In

heterozygous females, however, a disorder termed

double cortex (DC), also known as subcortical band

heterotopia, results [79]. As in other severe malfor-

mations, more than half of the patients with either

X-linked lissencephaly or subcortical band heteroto-

pia have de novo mutations not present in their parents

[81]. In DC, the outer cortex displays normal six-

layered architecture, but an inappropriate accumula-

tion of neurons exists in the subcortical white matter.

Random inactivation of the X chromosome probably

accounts for this pattern, although this supposition is

unproven. Half of the neurons express a normal copy

of the doublecortin gene and undergo normal migra-

tion, whereas the other half express the mutant copy

and remain arrested in the subcortical white matter.

Males have only one X chromosome, so the mutation

Clin N Am 14 (2004) 219–229 223
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affects all neurons. Hence, the more severe pheno-

type of classic lissencephaly occurs in males. Females

with DC display mild to moderate mental retarda-

tion, and their epilepsy is generally less severe than

in males with lissencephaly [82,83].

Like LIS1, DCX encodes a microtubule-associated

protein [84]. It has been postulated that the two act on

the same microtubule-based events in neuronal mi-

gration. After all, LIS1 and DCX mutations result in

nearly identical phenotypes, both genes code for

microtubule-associated proteins, and LIS1 and DCX

proteins have potential interactions [85]. Yet, surpris-

ingly, LIS1 and DCX expression in humans has been

reported to be strikingly disassociated [86], suggest-

ing potentially separate roles in neuronal migration.

LIS1 is widely expressed in all migrating neurons and

may be essential for cell motility in general. DCX,

however, is absent in radially oriented neurons but

present in tangential neurons [86]. Its role may

therefore be specific to nonradial, radial-glia inde-

pendent migration.

X-linked lissencephaly with abnormal genitalia. A

second X-linked form of lissencephaly with abnormal

genitalia (XLAG) has been described more recently

and has several radiographic differences from that

seen with LIS1 or DCX mutations. XLAG is associ-

ated with a much thinner cortex than seen in classic

lissencephaly and has associated malformations of the

genitalia. Unlike those with DCX mutations, XLAG-

carrier females are typically unaffected radiographi-

cally. XLAG is associated with mutations in the ARX

gene, encoding a human homologue of the fly arista-

less gene [87,88]. Mutations in the ARX gene cause a

striking range of phenotypes, including nonsyndromic

mental retardation, severe seizures (West’s syndrome),

and finally lissencephaly with the most severe muta-

tions [89–91]. The gene is expressed both in dividing

and migrating cells, especially in nonmigrating cells,

and so it seems to have functions in a number of stages

of cortical development [88].

Autosomal recessive lissencephaly with cerebellar

hypoplasia. Another form of lissencephaly has

been analyzed recently and represents mutations in a

gene called RELN, encoding a protein reelin [92].

This form of lissencephaly is rare and is quite distinc-

tive radiographically because of the severely small

cerebellum and hypoplasia of the brainstem and

milder reduction of cortical gyri. Although Norman

and Roberts [93] described a recessive form of lissen-

cephaly many years ago, their original family did not

show cerebellar hypoplasia and so represents a dis-
tinct form of lissencephaly not yet described at the

genetic level.

Cobblestone (type II) lissencephaly. Whereas clas-

sic lissencephaly occurs following an arrest of neuro-

nal migration, cobblestone lissencephaly develops

from an overmigration of neurons beyond the pial

surface and onto the overlying subarachnoid tissue.

Cobblestone lissencephaly is often associated with

congenital muscular dystrophy and eye abnormalities

as is the case in Fukuyama congenital muscular dys-

trophy (FCMD), Walker-Warburg syndrome (WWS),

and muscle-eye-brain disease (MEB). Other overlap-

ping features include cerebellar dysplasia, hypomye-

lination, and hydrocephalus [94]. These disorders are

believed to result from an impairment of glycosylation

[95]. O-mannosylation is the specific type of glyco-

sylation implicated. O-mannosylation is specific to

brain, nerve, and skeletal muscle, explaining the dis-

tribution of involved tissues in these disorders [96].

Of all three disorders, WWS has the most severe

phenotype; it is often fatal in the first year of life

[97]. In addition to cobblestone lissencephaly, pa-

tients with WWS sometimes display agenesis of the

corpus callosum, cerebellar hypoplasia, hydrocephaly,

and encephalocele. Neuroimaging reveals a thickened

cortex with few, abnormally shallow sulci. The gray–

white matter junction is irregular because of disorga-

nized collections of neurons misplaced in the white

matter. Hypomyelination is common [94]. Genetic-

ally, WWS is recessively inherited. The syndrome

results from mutations in the O-mannosyltransferase 1

(POMT1) gene [98], implicating a failure of glyco-

sylation as the primary defect. Consistent with this

theory, patients with WWS from POMT1 mutations

demonstrate an absence of glycosylation of alpha-

dystroglycan [98].

MEB is also an autosomal recessive condition and

is most prevalent in Finland. The clinical severity is

intermediate to WWS and FCMD [99], as is the

radiographic appearance [94]. MEB results from loss

of function mutations in the gene encoding protein

O–linked mannose b1,2-N-acetylglucosaminyltrans-

ferase 1 (POMGnT1) [100]. A genotype–phenotype

correlation exists in MEB patients. Mutations close to

the 5V terminus of the POMGnT1 gene result in a

severe clinical picture, and mutations at the 3V termi-

nus lead to milder impairments [101].

FCMD is, in general, the mildest of the three

disorders. It presents with hypotonia and global de-

velopmental delays. Seizures develop in the first year

of life in half of patients [102]. FCMD is associated

with mutations of the gene fukutin on chromosome

9q31 [103]. Although the exact function of fukutin is
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unknown, its structure predicts it to be an enzyme

involved in the modification of surface glycoproteins

or glycolipids. FCMD is postulated to have a patho-

physiology similar to that of MEB in which defects of

O-mannosylation compromise laminin binding [96].

FCMD is seen primarily in Japan, where 94% of the

affected individuals share a common haplotype, indi-

cating a single founder in the Japanese population

[103]. Patients who are homozygous for the founder

mutation have a higher residual activity of fukutin and

a milder phenotype than patients with a spontaneous

point mutation on the second allele (compound het-

erozygotes) [104]. It can be difficult to distinguish

severely affected FCMD cases from WWS patients.

Recently, two Turkish individuals with mutations of

fukutin were reported as displaying a WWS pheno-

type [105]. Such overlap implies a shared pathway in

the pathophysiology of these disorders. These several

glycosyltransferases are thought to all converge on a

common target, a-dystroglycan, which is an essential

link between cell membranes and the extracellular

matrix [106,107].

Symmetric polymicrogyria

Polymicrogyria is thought to develop at the latest

stages of neuronal migration or the earliest phases

of cortical organization [1]. It often results from ex-

ternal causes such as intrauterine cytomegalovirus

infection or placental perfusion failure. Genetic

causes do exist, however, and tend to result in focal

but symmetric lesions. Syndromes affecting every

conceivable region—fronto-parietal, perisylvian,

parieto-occipital—have been observed. Epilepsy and

cognitive delays are common among all of the

syndromes; additional symptoms depend upon the

specific regions affected.

Bilateral frontoparietal polymicrogyria. Bilateral

frontoparietal polymicrogyria is characterized by bi-

lateral, symmetric polymicrogyria in the frontoparietal

regions [108]. There is a decreasing gradient of

severity from the anterior to posterior direction. The

white matter is thin with areas of T2 prolongation, the

ventricles are enlarged, and the pons and cerebellar

vermis are abnormally small [108]. The clinical mani-

festations are consistent: motor abnormalities, seiz-

ures, and global developmental delay are universal

[108]. Cerebellar abnormalities and disconjugate gaze

are also common. The disorder has been mapped to

chromosome 16q12.2–21 [108,109], and the respon-

sible gene has recently been identified as GPR56,

which encodes a G-protein–coupled receptor [110].

Patients with bilateral frontoparietal polymicrogyria

are characteristically from the Middle East or from the
Indian subcontinent, although cases from Canada and

the United States have been observed [108].

Bilateral perisylvian polymicrogyria. Bilateral peri-

sylvian polymicrogyria results in a clinical syndrome

manifested by mild mental retardation, epilepsy, and

pseudobulbar palsy [111]. The pseudobulbar palsy

specifically affects expressive speech and feeding.

Bilateral perisylvian polymicrogyria is often a spo-

radic condition. It has been described in association

with unrelated disorders including neurofibromatosis

type I [112] and Kabuki syndrome [113]. Bilateral

perisylvian polymicrogyria is therefore likely to be

heterogeneous genetically. In some pedigrees, bilat-

eral perisylvian polymicrogyria follows an X-linked

inheritance pattern, and linkage analysis places the

critical region at Xq28 [114].
Summary

The list of genetically characterized malformations

of the cerebral cortex continues to grow, and the rate

of growth is accelerating. There are still dozens of

syndromes that have not yet received their definitive

description, much less their genetic characterization.

The absence of a family history should by no means

rule out a genetic condition, because many genetic

conditions are recessively inherited or caused by

de novo mutations. The radiographic features are an

increasingly specific and sensitive guide to genetic (or

nongenetic) causation and are important in directing

the genetic workup. As more is learned about genetic

causes of cortical malformations, this genetic infor-

mation will be increasingly integrated into the inter-

pretation of MR imaging to increase its specificity

even further.
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