
The human brain is a complex structure that controls 
sophisticated cognitive behaviour. Anatomically, 
the cerebral cortex is divided into frontal, temporal, 
parietal and occipital lobes, and these regions control 
thinking, language, movement, sensation, vision and 
other functions. The formation of these distinct func-
tional regions during cortical development is called 
regionalization (or arealization)1–4. Two models for 
the formation of cortical functional regions have been 
proposed5–7. The protomap model suggests that intrinsic 
signals from the ‘proliferative units’ in the ventricular 
zone regulate functional regionalization, whereas the 
protocortex model argues the importance of extrinsic 
influences, such as the thalamocortical inputs5–7. 
Accumulating evidence indicates that both models are 
applicable to the regulation of cortical patterning and 
the establishment of cortical regionalization2–4.

The cerebral cortex is also divided into left and 
right hemispheres. The left hemisphere is normally 
dominant for language and logical processing, whereas 
the right hemisphere is specified for spatial recogni-
tion8,9. Additionally, the segregation of human brain 
functions between the left and right hemispheres is 
associated with asymmetries of anatomical structures, 
such as the Sylvian fissures and the planum tempo-
rale10,11. One of the striking features of motor control 
in humans is that more than 90% of the population is 
more skilful with the right hand, which is controlled 
by the left hemisphere12. Similar to the left-hemi-
sphere dominance of handedness, language ability is 
dominant in the left hemisphere in more than 95% of 
the right-handed population but in only 70% of the 
left-handed population12.

Is it coincidental that both language ability and 
hand use are dominant in the left hemisphere in most 
of humans? Is there genetic control of both brain asym-
metry and handedness? Using molecular and neuro-
logical approaches, we are beginning to tackle these 
questions and discover the neurological circuitries 
that regulate brain asymmetry. Here, we describe brain 
asymmetries that have been measured using modern 
imaging techniques and discuss the genetic correlation 
between brain asymmetry and preferential hand use. 
Furthermore, we propose evolutionary and molecular 
mechanisms that might regulate brain asymmetry and 
handedness. 

Functional and anatomical brain asymmetries
The first detailed description of functional asymmetry 
in the human brain was made in the 1860s by a French 
doctor named Paul Broca. He found that there was a 
lesion in the left hemisphere of the post-mortem brain 
of a patient with a one-word vocabulary. Broca claimed 
that language ability in the human brain is lateral-
ized and supplied perhaps the first strong evidence of 
functional asymmetry in the brain13. This brain region, 
which controls speech, is called Broca’s area in honour 
of his discovery. In 1874, a German neurologist named 
Carl Wernicke discovered that damage to a region of 
the left hemisphere could cause a type of aphasia that 
resulted in an impairment of language comprehension14. 
This area is called Wernicke’s area.

Brain functional asymmetry is not limited to lan-
guage ability. Whereas the right cerebral cortex regu-
lates movement of the left side of the body (and the left 
cerebral cortex regulates movement of the right side), 
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Protomap model
Proposed by Pasko Rakic. He 
suggested that regionalization 
is mainly controlled by 
molecular determinants that 
are intrinsic to the proliferative 
zone of the neocortex. The 
‘proliferative units’ in the 
ventricular zone form a 
protomap of prospective 
cortical regions. Postmitotic 
neurons migrating from the 
ventricular zone maintain the 
regional properties of the 
proliferative units.
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Abstract | In the human brain, distinct functions tend to be localized in the left or right 
hemispheres, with language ability usually localized predominantly in the left and spatial 
recognition in the right. Furthermore, humans are perhaps the only mammals who have 
preferential handedness, with more than 90% of the population more skilful at using the right 
hand, which is controlled by the left hemisphere. How is a distinct function consistently 
localized in one side of the human brain? Because of the convergence of molecular and 
neurological analysis, we are beginning to consider the puzzle of brain asymmetry and 
handedness at a molecular level.
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Protocortex model
Proposed by Dennis O’Leary. 
He suggested that 
regionalization is controlled in 
large part by extrinsic 
influences, such as 
thalamocortical inputs.

Sylvian fissures
The deepest and most 
prominent of the cortical 
fissures (clefts). They separate 
the frontal lobes and temporal 
lobes in both hemispheres.

Broca’s area
The left inferior frontal gyrus of 
the frontal lobe of the human 
cortex. This area is responsible 
for speech and for 
understanding language. 
Injuries to this area can cause 
Broca’s aphasia, which is 
characterized by non-fluent 
speech, few words, short 
sentences and many pauses. 
Patients normally lose the 
ability to understand or 
produce grammatically 
complex sentences.

Wernicke’s area
The left posterior section of the 
superior temporal gyrus, where 
the temporal lobe and parietal 
lobe meet. It is involved in the 
comprehension of written or 
spoken language. People with 
damage in this area speak 
fluently, but often using words 
or jumbled syllables that make 
no sense; this is known as 
Wernicke’s aphasia.

more than 90% of the human population is naturally 
more skilled with the right hand than with the left12. 
Cognitive studies on patients with unilateral lesions and 
on patients with split-brain surgery have revealed many 
other differences between the left and right cerebral 
cortex15. For example, the left hemisphere is dominant 
for mathematical and logical reasoning, whereas the 
right hemisphere excels at shape recognition, spatial 
attention, emotion processing and musical and artistic 
functions15–17.

Using modern imaging techniques, particularly 
MRI, scientists can map the asymmetries of anatomical 
structures in the human brain. Among the most studied 
regions are the Sylvian fissures, which separate the fron-
tal and temporal lobes. For example, the posterior end 
of the Sylvian fissure in the right hemisphere is higher 
than in the left, whereas the left fissure has a more gentle 
slope10,11,18 (FIG. 1a,b). The planum temporale, a region in 
the posterior portion of the superior temporal sulcus, is 
larger in the left hemisphere than in the right in more 
than 65% of adult brains and 56–79% of fetal or infant 
brains examined19–22. More recently, digital brain maps 
have generated three-dimensional images of human 
brains and further revealed cortical asymmetries10. 
Moreover, a new population average, landmark- and 
surface-based (PALS) atlas approach has shown the most 
consistent asymmetries to be in and near the Sylvian 
fissures (FIG. 1a,b) and the superior temporal sulcus11 

(FIG. 1c).
The differences in neuronal cell type or cell 

organization that might underlie these gross anatomi-
cal differences are unclear. Studies have shown that 
language-related areas of the left cortex might contain 
more and larger layer 3 pyramidal cells than corre-
sponding areas in the right hemisphere23. Rosen24 
and Galaburda25 used histological studies to suggest 
that the asymmetrical regions in the cortex might be 
the results of differences in neuron numbers but not 
packing density. However, the tremendous size of the 
human cortex and its extensive and variable folding 
pattern make corresponding areas difficult to compare 
with certainty.

In addition to the asymmetries related to language 
abilities, such as those of the Sylvian fissures and the pla-
num temporale, anatomical asymmetries associated with 
hand use have also been detected in other regions in the 
human cerebral cortex. In the primary somatosensory 
cortex (S1), studies using magnetic source imaging have 
shown that the cortical representation of the right hand 
is larger than the one of the left hand in right-handers, 
and vice versa in left-handers26. Moreover, the left central 
sulcus, a large inward fold marking the division between 
the frontal and parietal lobes, is deeper than the right 
central sulcus in right-handers27. Inter-hemispheric 
comparison has further revealed a significant increase 
of the hand and finger movement representation in the 
primary motor cortex opposite to the preferred hand28. 

 In contrast to these findings, other reports have 
shown no obvious correlation of handedness and brain 
asymmetries. For example, using voxel-based morpho-
metry, Good et al.29 did not detect effects of hand use on 
asymmetrical morphology in sensorimotor regions of 
more than 465 normal adult brains. Although different 
methodologies used in these studies could lead to oppo-
site conclusions, the analyses of anatomical asymmetries 
associated with handedness in the primary sensory and 
motor cortices are compelling.

Handedness and language ability are two of the most 
obvious lateralized behaviours in humans. Taking note 
of the convergence of functional and anatomical studies, 
the asymmetrical cortical controls that regulate handed-
ness are tightly correlated with those for language ability. 
But how are these controls established in humans?

Correlation of hand use and language ability
That most humans (more than 90%) prefer to use their 
right hand has been observed in almost all cultures and 
ethnicities throughout history12,30. Statistical studies sug-
gest that handedness might be under genetic control. 
There are at least two well-known genetic models of 
handedness31,32 (BOX 1), and although these models seem 
to reflect genetic mechanisms of cortical asymmetry 
and handedness, genes that regulate these asymmetries 
have not been identified. Furthermore, the question of 
whether a single gene can control such complex processes 
in the CNS is still unanswered31. Nevertheless, the single-
gene models proposed by Annett33 and McManus34 fit 
statistical data of cerebral dominance for handedness 
in humans. Identifying the gene(s) that regulates brain 
asymmetry and handedness remains an appealing but 
challenging task.

Why is there a left-hemisphere bias for handed-
ness and language ability? Preferred hand use has been 
observed even at embryonic and fetal stages in humans, 
long before language ability is developed. For example, in 
most human embryos, the right hand is more developed 
than the left at 7 weeks35. Using ultrasound, it has been 
observed that at 15 weeks most fetuses prefer to suck their 
right thumb, hinting that handedness is present prior 
to birth36. Interestingly, Hepper et al.37 followed up this 
study of 75 individuals. They found that the 60 fetuses 
that preferred to suck their right thumb were indeed 
right-handed as teenagers, and of the 15 fetuses that 

Figure 1 | Anatomical asymmetries in the human cerebral cortex. Coronal (a) and 
horizontal (b) MRI of the Sylvian fissures (red arrows) in the human brain. The Sylvian 
fissures separate the frontal lobes and temporal lobes in both hemispheres. The left (L) 
fissure is more ventral (V) and extends further towards the posterior (P) than does the 
right (R). Illustration of differences of sulcal depth between the left and right 
hemispheres (c). Cortical regions that are deeper in the right hemisphere are shown in 
red and yellow, whereas regions that are deeper in the left are shown in blue and green. 
A, anterior; D, dorsal. Modified, with permission, from REF. 11 © (2005) Elsevier Science. 
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Magnetic source imaging 
The detection of the changing 
magnetic fields that are 
associated with brain activity 
and their subsequent 
overlaying on magnetic 
resonance images to identify 
the precise source of the signal.

Paw preference
In a food-reaching task, paw 
preference measures the 
frequency of using either the 
left or the right front paw to 
reach food. It has been 
observed in mice, rats, cats and 
dogs.

preferred to suck their left thumb, 5 were right-handed 
and 10 were left-handed. Moreover, several early studies 
have shown that some cortical sulci and gyri, such as the 
temporal gyri, are asymmetrical in human fetal brains 
from 10–44 weeks22,38,39. Using the measurement of cer-
ebral blood flow, Chiron et al.40 found that the maturation 
of the right hemisphere precedes the left in the brains of 
human infants between 1 and 3 years of age. This asym-
metrical pattern shifts towards the left hemisphere during 
the process of development of language abilities at about 
the age of 3 (REF.40). Additionally, Trevarthen41 observed 
that expressive gestures, such as communicative hand 
movement, were asymmetrical in infants.

These results imply that anatomical and functional 
brain asymmetry precedes uptake of information from 
the environment and cognitive development. This in 
turn suggests the existence of intrinsic controls that reg-
ulate brain asymmetries at early stages. Although these 
kinds of study are interesting, one has to keep in mind 
whether this early right-hand preference is controlled by 
high-level regulation in the left hemisphere of the cortex, 
or by spontaneous movement regulation in the spinal 
cord. Furthermore, whether early brain asymmetries 
contribute more to handedness or to language ability still 
remains an intriguing and challenging question12.

Because anatomical asymmetries of certain areas in 
the human brain are associated with language ability, 
several researchers have made efforts to map asym-
metries of the planum temporale and Broca’s area in the 
brains of chimpanzees and great apes42–44. They found 
that simian brains also have asymmetries, which resem-
ble those of humans. These studies suggest that brain 
structures associated with language ability might have 
existed before humans evolved. However, it is not clear 
whether vocal communication is asymmetrical in non-
human primate brains or how these asymmetrical struc-
tures are involved in vocal processing45. Furthermore, 
because of the complex structure of the cerebral cortex, 
the mapping of areas that correspond in human and 
primate brains is difficult46.

Which hemispheric asymmetry (for handedness 
or for language ability) appeared first in evolution still 
remains a puzzle. Further comparative studies of brain 
asymmetry and handedness in non-human primates will 
help us to understand the relationship between handed-
ness and language ability in humans47.

Evolutionary mechanisms of biased hand use
More than 90% of the human population is right-handed, 
and biased hand use is also observed in non-human 
primates and other mammals. But whether there is a 
dominant preference for one hand at a population level 
is still debatable. What has made most humans right-
handed during evolution is still unknown. 

Handedness in non-human primates. There are many 
contradictory reports about hand use in non-human 
primates, such as chimpanzees. A broad range of 
manual tasks have been observed in chimpanzees, 
including simple reaching, bimanual feeding, coordi-
nated bimanual actions, throwing, manual gestures and 
so on48,49. Although these observations have led to the 
argument that, for some measures, chimpanzees are 
right-handed, most of these findings are from captive 
great apes; evidence of population-level handedness in 
wild apes is extremely sparse48,49. Therefore, these stud-
ies do not conclude that there is a dominant preference 
for hand use in non-human primates at the population 
level.

A recent report of hand preferences during termite-
fishing/probing actions of chimpanzees is interesting. 
First, Lonsdorf and Hopkins50 studied wild chimpanzees 
living in the Gombe National Park, Tanzania, but not 
captive chimpanzees. Second, they observed termite-
fishing actions, which require fine motor skill. They 
claimed that directional biases in hand use vary depend-
ing on the type of tool use. Therefore, the question of 
whether there is strong handedness in non-human 
primates might be confounded by biases in the types 
of motor skill required. Tests that better discriminate 
behavioural biases in wild primates are needed before 
any definitive conclusions can be drawn.

Paw preference in other mammals. A well-studied 
lateralized manual behaviour of many mammals is the 
food-reaching task, defined by paw preference. Although 
paw preference has been observed and studied in mice, 
rats, cats and dogs, it does not seem biased to either the 
left or the right front paw at a population level51–56. For 
example, paw preference was observed among domestic 
cats, but no significant bias in preference was found at 
the level of the group53. In mice, although there is paw 
preference in each individual mouse, approximately half 
of the mice studied preferred to use the left paw and half 
preferred to use the right57,58. There are also differences 
in the strength and direction of paw preference between 
mouse strains, indicating that genetic background is an 
important influence on this behaviour55.

Paw preference in mice has encouraged scientists 
to find the genetic causes of this manual lateralization. 
Collins59 attempted to breed left- or right-handed mice, 
and although he was unable, by inbreeding, to create a 
mouse strain that prefers to use only the left or the right 
front paw, he did succeed in generating mice that show 
a strong lateralization. For example, the HI strain was 
bred using mice that showed consistent right or left paw 
use in a food-reaching task, and the LO strain was bred 
using mice with little overall paw preference59. 

Box 1 | Genetic models of human handedness

Marian Annett33 has proposed that the inheritance of the right-shift (RS) gene shifts the 
manual skills in favour of the right hand instead of the left. She emphasizes that RS 
influences left cerebral dominance rather than handedness; the effect of RS is to impair 
the control of speech systems in the right hemisphere, allowing language abilities to 
function in the left side. Handedness is just the secondary consequence of the left-
cerebral cortical dominance93.

The other model was proposed by Chris McManus34. He suggests that handedness is 
controlled by two alleles: D (dextral) and C (chance). According to his model, the 
homozygous DD genotype produces only right-handers, whereas the homozygous CC 
genotype produces a random mixture of 50% right-handers and 50% left-handers. 
Furthermore, the heterozygote, DC, produces 25% left-handers and 75% right-handers. 
This model reflects the Mendelian model of genotype and phenotype distribution.
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Is paw preference associated with lateralized brain 
anatomy and/or function in mice? The direction of paw 
preference seems to correlate with the dominance of 
dopamine expression levels in the brain: a mouse that 
prefers to use the left front paw has a higher dopamine 
level in the left hemisphere than in the right, although 
the physiological implications of this correlation are 
unknown60,61. Selectively bred mice (the O/AP strain) 
with supernumerary whiskers on the right side of the 
face and corresponding supernumerary barrels in the left 
barrel field showed a higher preference for using the left 
front paw. Likewise, mice with supernumerary whiskers 
on the left side of the face preferred to use the right front 
paw62. This biased front-paw use might be the result of 
competition for cortical representation between the size 
of the motor cortex and the somatosensory barrel field in 
which the whiskers are represented. A larger S1 (the bar-
rel field) in the left hemisphere, for example, might make 
the size of the left motor cortex smaller, and lead to biased 
left front-paw use controlled by the right hemisphere.

Moreover, the areas of whisker-pad representation in 
the S1 between the left and right hemispheres of adult rats 
have shown striking variations (that is, asymmetries) in 
individuals. However, these asymmetries are not biased 
to either the left or the right hemispheres63,64. Does the 
asymmetry of the S1 provide a hint that paw preference 

has corresponding and asymmetrical cortical structures 
that control it? It will be interesting to map the sizes of the 
S1 regions and the direction of paw preference in mice.

In terms of the distribution of hand use, there is a 
consistent 9:1 ratio of right/left hand preference reported 
in humans, higher than has been reported for any other 
mammal12,50. The directional manual task in mice, like 
paw preference, might be regulated by the formation of 
stable neural circuits, but it has a random distribution at 
the population level. Given these examples of low or no 
bias in chimpanzees and mice, it is an intriguing puzzle 
as to how consistent right-hand dominance evolved in 
humans. Corballis31 has proposed that there was a genetic 
mutation in hominid evolution that promoted preferen-
tial use of the right hand and is now seen in modern 
humans. This evolutionary bias might be advantageous 
as it could increase brain capacity and social cohesion65. 
Applying genomic approaches, particularly the complete 
sequencing of the human and chimpanzee genomes, 
will provide a considerable insight into the evolution-
ary mechanisms of lateralized human behaviours and 
human brain development and asymmetry47,66–69.

Body and brain asymmetries 
Little is known about the genetic causes of brain ana-
tomical and functional asymmetries70. By contrast, stud-
ies of molecular regulation of asymmetries in the visceral 
organs, such as the heart and lungs, have made encour-
aging progress (BOX 2). Inspired by the identification 
of molecules that have essential roles in visceral organ 
asymmetry, researchers have succeeded in identifying 
molecules that regulate brain asymmetry in zebrafish, 
perhaps the only species that has been well studied 
with respect to brain asymmetry (BOX 3). Conserved 
molecules that regulate body asymmetry, such as Nodal 
and ion channel related gene products, are also essential 
for regulating asymmetry of the epithalamus, a small 
structure of the diencephalons71,72.

Do the same molecular mechanisms that regulate 
body asymmetry also cause human brain asymmetry? 
The complete reversal of normal organ position, such as 
heart and lungs, is called situs inversus. With the excep-
tion of the reversed frontal and occipital petalia observed 
using anatomical and functional MRI techniques, the 
left-hemisphere dominance for language was still found 
to be similar in individuals with situs inversus and in 
normal subjects73. Nor did lateralization of auditory 
processing show any differences between individuals 
with situs inversus and normal subjects74. Moreover, 
50% of individuals with Kartagener’s syndrome, a dis-
order caused by cilia with a decreased or total absence 
of motility, have been found to have situs inversus75. This 
disorder might confirm the function of cilia in regulat-
ing visceral organ asymmetry, as defects in cilia mobility 
might result in the random distribution of NODAL mol-
ecules (BOX 2). However, the situs inversus patients with 
Kartagener’s syndrome developed normal handedness76. 
Therefore, it seems reasonable that the molecules and 
mechanisms that regulate visceral organ asymmetries 
might be distinct from those that regulate brain asym-
metries and handedness70,77.

Box 2 | Molecular regulation of visceral organ asymmetry

Several studies have elegantly addressed the molecular regulation of the left–right 
asymmetry of internal organs, such as the heart, stomach, lungs and intestines of 
vertebrate bodies94,95. Three signalling pathways (SHH, FGF8 and NODAL) have crucial 
roles in left–right body determination96,97. In the chick embryo, sonic hedgehog (SHH) and 
its target gene caronte (CAR ) are expressed to the left of the chick node (a structure of 
the body organizer in chicks) , whereas FGF8 is expressed to the right of the chick node98–

100. Misexpression of SHH on the right side of the node is sufficient to induce heart 
formation on the right98. In the mouse embryo, neither SHH nor FGF8 is expressed 
asymmetrically97. Instead, the unidirectional rotation of monocilia on the surface of the 
mouse node directs the NODAL molecule to the left and activates its downstream genes, 
such as Lefty2 and Pitx101–103. Moreover, early differential ion flux, such as that driven by 
the H+ and K+ ATPase transporter, was shown to cause early body asymmetry104. The 
neurotransmitter serotonin was recently reported upstream of asymmetrically expressed 
genes (such as SHH) in chick and frog embryos, and has a role in early patterning of the 
left–right body axis105,106.

Box 3 | Molecular regulation of zebrafish brain asymmetry

The asymmetries of the epithalamus, which are exemplified by the habenula and the 
pineal complex, are well studied in zebrafish71. Although the functional consequences of 
epithalamus asymmetry are still unclear, it seems to be involved in regulating sexual 
activities, photoreception and communication71,107. Both the habenula and the pineal 
complex show asymmetries on the left side in zebrafish. Interestingly, genes involved in 
the Nodal pathway, such as the Nodal-related gene cyclops and Nodal downstream 
genes lefty1 and pitx2, were shown to control the laterality of the asymmetry, suggesting 
that a conserved signalling pathway that regulates visceral laterality also underlies an 
anatomical asymmetry of the zebrafish brain72,108–110. Moreover, a recent report has shown 
that the frequent situs inversus (fsi) line of zebrafish displayed concordant reversal of 
visceral organ and neuroanatomical asymmetries in the diencephalons111. Interestingly, 
fsi zebrafish also showed a reversal of some behavioural responses, which has not been 
detected in mammals with situs inversus111. These results indicate that the molecular 
regulation of brain and body asymmetries can be species specific.
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Serial analysis of gene 
expression
(SAGE). A method for 
comprehensive analysis of 
gene expression levels and 
patterns using PCR 
amplification and generating 
SAGE libraries.

Our recent studies, using a genomic screening 
approach, further support this idea. Using a serial analysis 
of gene expression (SAGE) technique, we measured gene 
expression levels in the left and right hemispheres of 
human fetal brains78. We verified 27 genes that are dif-
ferentially expressed in the hemispheres of 12-week-old 
human fetal brains by using either real-time reverse 
transcription (RT)-PCR or in situ hybridization (FIG. 2). 
Most genes identified using SAGE analyses function in 
signal transduction and gene expression regulation47. 
Among them, the transcription factor Lim domain only 4 

(LMO4) showed consistent asymmetry of expression in 
human fetal brains at 12 weeks and 14 weeks, and less so 
at 16 and 17 weeks78. However, we did not detect genes 
that have essential roles in visceral organ asymmetry, 
such as genes involved in the sonic hedgehog (SHH) 
or NODAL pathways, which are also differentially 
expressed in human fetal brains78. Because the earliest 
stage analysed was in the human fetus at 12 weeks, it 
cannot be ruled out that molecules regulating body 
asymmetry might also be differentially expressed in 
human embryonic brains (for example, at 8–10 weeks). 
It will be interesting to measure gene expression levels 
in the left and right hemispheres in human embryonic 
brains (8–10 weeks) using SAGE or cDNA microarray 
approaches.

Molecular regulation of brain asymmetry
An essential step leading towards asymmetry is to break 
symmetry79. Although the initiation mechanisms of 
breaking symmetry are still unknown, an uneven dis-
tribution of molecules that are essential for left–right 
body axis patterning could be important for this bio-
logical event.

How, then, is symmetry broken in the CNS? 
Neuroepithelial cells divide vigorously, fold dorsally and 
form a neural groove during early embryonic develop-
ment80. The neural groove continues to grow, and the 
dorsal parts meet at the midline and fuse to form a neural 
tube80. Neural tube development is accompanied by the 
formation of the notochord and the induction of the floor 
plate81. Numerous studies have shown that the notochord 
is a patterning centre for the ventral neural tube82. In the 
forebrain, a structure anterior to the notochord is called 
the prechordal plate83. Molecules secreted from the noto-
chord, such as SHH, function as morphogens to induce 
and maintain the ventral property and neural cell types 
in the spinal cord82. Similar morphogens also induce 
and pattern the forebrain, and are probably secreted 
from the notochord or the prechordal plate84. Moreover, 
the patterning centres are not limited to the notochord 
and the ventral neural tube. Morphogens, such as bone 
morphogenetic proteins and WNTs, are secreted from 
the roof plate in the neural tube85. 

One possible mechanism for breaking symmetry 
in the brain is that the morphogens secreted from the 
ventral (floor plate or prechordal plate) and/or dorsal 
(roof plate) midlines are distributed differently between 
the left and right (FIG. 3a,b). The different expression 
levels of morphogens induce differential expression 
of downstream transcription factors, such as LMO4 
(REF. 78), and eventually lead to brain asymmetry.

Recent studies of the molecular regulation of corti-
cal regionalization have identified a patterning centre 
in the anterior cortex2–4. An important molecule that is 
secreted from the anterior cortical region is fibroblast 
growth factor 8 (FGF8)86. The ectopic expression of 
FGF8 can expand the motor cortex and shift the func-
tional regions of the cortex caudally86. It is possible that 
the expression levels of morphogens secreted from the 
anterior cortical region might be different in the left and 
right hemispheres (FIG. 3c). The asymmetrical expression 

Figure 2 | Asymmetrically expressed genes in 12-week-old human fetal brains, 
detected by serial analysis of gene expression and real-time reverse 
transcription (RT)-PCR. The cDNA made from the perisylvian regions of the left and 
right hemispheres of two 12-week-old human fetal cortices were used as templates for 
real-time RT-PCR. The relative gene expression levels are average ratios of gene 
expression detected by RT-PCR between the left and right hemispheres of two brains. 
These differential gene expression levels also match those measured by serial analysis of 
gene expression (SAGE)78. 27 genes showing consistent differential expression are listed. 
Among them, 17 genes were highly expressed in the left perisylvian regions, whereas 10 
genes were highly expressed in the right.

Figure 3 | Three models of molecular induction of brain asymmetry. a | Whereas the 
neural tube (red) is derived from the ectoderm, the notochord (blue) is derived from the 
mesoderm and accompanies the neural tube formation. During neural tube 
development, the most dorsal part of the neural tube becomes the roof plate (green), 
whereas the most ventral part of the neural tube becomes the floor plate (blue). The 
forebrain is developed from the most rostral region in the neural tube. In the forebrain, 
the morphogens secreted from the notochord or the prechordal plate (not shown) might 
be differentially distributed between the left and right neural tube. b | Similarly, uneven 
secretion of molecules might also occur in the roof plate. Different morphogen 
expression levels in the left and right neural tube might break the symmetry of brain 
patterning and induce asymmetrical expression of downstream genes. c | Anterior 
signals might also induce cortical asymmetry. The patterning centre in the most rostral 
neural tube — for example, the anterior neural ridge (green) — could be a source for 
cortical asymmetrical patterning. The distribution of molecules secreted from this area 
might be different in the left and right hemispheres.
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Notochord
A structure composed of cells 
derived from the mesoderm 
and defines the primitive axis 
of the embryo. It lies between 
the neural tube (spinal cord) 
and the gut.

Morphogen
A diffusible substance that 
carries information influencing 
the movement and 
organization of cells during 
morphogenesis. It normally 
forms a concentration gradient.

of regional markers, such as LMO4, could reflect asym-
metrical topographic mapping of functional regions 
along the anterior–posterior axis in the cortex78.

Future work will include the identification of more of 
the morphogens that pattern the early cortex and their 
downstream targets. Consistent with regionalization 
in the cortex, which involves complex gene expression 
and regulation4, brain asymmetry and handedness are a 
conjugated result of molecular regulation, neural con-
nections and plasticity.

Conclusions and future perspectives
The challenge of studying brain asymmetry is that 
because the obvious anatomical and functional asym-
metries have been identified largely in humans, we can-
not carry out direct experiments. The recent behavioural 
studies in non-human primates, such as the investigation 
of handedness in chimpanzees, might help us to better 
understand how human handedness has evolved50. In 
particular, the comparison of human and chimpanzee 

genomes has enriched our knowledge of the evolution-
ary mechanisms of human brain development47,66–69. 
Similar studies might help us to understand the evolu-
tionary regulation of human brain asymmetry.

Several human neurological disorders show dis-
rupted normal brain asymmetry. For example, reduced 
and reversed anatomical brain asymmetry has been 
reported in individuals with schizophrenia, autism or 
dyslexia87–90, suggesting a potential indirect relationship 
between the causes of these disorders and the asym-
metrical development of the human cerebral cortex. 
Recently, several studies have reported clinical cases of 
polymicrogyria — a malformation of cortical develop-
ment that is characterized by many small gyri in the 
cortex — that occurs only on one side of the cortex; 
this is known as unilateral polymicrogyria91,92 (FIG. 4). 
Patients have seizures, motor dysfunction and mental 
retardation. A genetic cause of unilateral right-sided 
polymicrogyria is suggested by the existence of several 
pedigrees in which the disorder is present in more than 
one individual of an affected family92. These studies 
indicate that unilateral polymicrogyria can be inherited 
as a Mendelian trait, suggesting that there might be a 
gene that is required for the development of the right 
perisylvian region92. Using forward genetic approaches 
to map genes that cause disrupted brain asymmetry 
might reveal their normal function in asymmetrical 
development of the brain.

Faster development and improvement of large-scale 
screening approaches at the genomic level could make 
the identification of asymmetrically expressed genes in 
human and mouse brains easier and quicker. Generating 
genetically engineered mice can help us to understand 
the functions of these genes in brain development. Using 
these mouse models can also help to reveal the neural 
circuitries that regulate brain asymmetry and lateral-
ized behaviours. However, unlike visceral organ asym-
metries, which are easy to detect, brain asymmetry relies 
largely on fine brain mapping and reliable behavioural 
tests. Therefore, the development of molecular imaging 
techniques and an improved understanding of lateral-
ized behaviours in rodents will be extremely useful for 
studies of brain asymmetry.

Figure 4 | Unilateral polymicrogyria detected using MRI. Polymicrogyria (indicated 
by arrows) is detectable in the right hemispheres in both brains shown. An apparent 
increase in cortical thickness is observed in the right (R) hemispheres, whereas the 
cortices of the left (L) hemispheres appear entirely normal. Modified, with permission, 
from REF. 92 © (2006) Lippincott Williams & Wilkins.
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