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Interest in genetic malformations of the frontal lobe has
grown from the recognition that certain brain malforma-
tions have a predilection for the frontal lobes or are more
severe in the anterior brain. These malformations can be
deleterious, as the frontal lobes in humans are particularly
large in comparison with those of other species and play
an important role in cognitive developmental functions.

Types of Frontal

Malformations

A subset of brain malformations is confined to the fron-
tal lobes, or to two or more lobes including the frontal
lobes; another group of malformations shows an antero-
posterior (a > p) gradient of severity, such as the contin-
uum agyria–pachyria/band heterotopia as well as several
cobblestone and cobblestone-like encephalopathies. Our
objective here is to provide a brief overview of genetically
determined human frontal malformations.

Malformations involving the frontal lobes alone or in
combination with other lobes

Polymicrogyria
Polymicrogyria can range from mild forms localized to

a single gyrus, to one or more lobes, or be diffuse, and is
classified according to its lobar topography. It is a heterog-
enous condition, clinically and etiologically; extensive
investigations may help to refine the diagnosis and to
improve genetic counseling (Jansen & Andermann, 2005).
Among the various patterns, several involve the frontal
lobes bilaterally or unilaterally to various degrees.

Bilateral frontal polymicrogyria. In an observation of 13
unrelated children, the polymicrogyria extended symmet-
rically, from the frontal pole to the precentral gyrus, and to

the frontal operculum inferiorly. Several patients showed
associated abnormalities in the white matter, including
reduced volume and multiple small foci of T2 hyperinten-
sity. In two families, the parents were first cousins, sug-
gesting possible autosomal recessive (AR) inheritance in
some cases (Guerrini et al., 2000).

Bilateral frontoparietal polymicrogyria (BFPP), GPR56
mutations, and BFPP type 2 (BFPP2). The main clinical
features of typical BFPP include: global developmental
delay; bilateral pyramidal and cerebellar signs; and sei-
zures, mostly generalized, in 94% of patients (Chang
et al., 2003; Piao et al., 2005). In four patients, a Lennox-
Gastaut syndrome was reported (Parrini et al., 2008).
Patients with BFPP2 may not have epilepsy and lack the
pyramidal and cerebellar signs. BFPP is consistently asso-
ciated with anomalies in the white matter and brainstem as
well as cerebellar hypoplasia, whereas BFPP2 is not.
BFPP seems to be genetically homogeneous, since all
families reported to date show an AR pattern and associa-
tion with mutations in the GPR56 gene. Patients with
BFPP2, on the other hand, do not have a mutation in the
GPR56 gene (Piao et al., 2005).

The GPR56 protein is an adhesion G protein–coupled
receptor. Studies of the biochemical properties of the wild-
type and mutant protein have shown that this protein
undergoes two major modifications: a G protein-coupled
receptor (GPCR) proteolytic site (GPS)-mediated proteo-
lytic cleavage and N-linked glycosylation. Loss-of-
function mutations in these two modification sites lead to
impairment of cell-trafficking and cell surface expression
(Jin et al., 2007). Loss of GPR56 in knockout mice leads to
overmigration of neurons through a defective basal mem-
brane into the pial layer, forming a cobblestone-like brain
malformation (Li et al., 2008), suggesting that BFPP might
be a cobblestone-like brain malformation.

Bilateral perisylvian polymicrogyria. In these patients,
the polymicrogyria involves the frontal, parietal, and/or
temporal opercula, and can be further classified into holo-
sylvian polymicrogyria in which the entire perisylvian
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cortex is affected, and posterior polymicrogyria in which
only the posterior perisylvian cortex is involved (Barko-
vich et al., 1999).

Unilateral polymicrogyria—a distinct entity?
Unilateral polymicrogyria is usually right-sided and

affects mainly the anterior brain areas, extending to the
frontal/perisylvian or frontoparietal cortex, and is often
associated with ipsilateral hemispheric atrophy or hypo-
plasia (Caraballo et al., 2000; Hayakawa et al., 2002;
Chang et al., 2006; Kuchukhidze et al., 2007). In one of
the families, the mode of transmission suggests autosomal
dominant (AD) or X-linked inheritance, whereas in three
other families, each with two affected siblings, the inheri-
tance is AD with decreased penetrance or AR. In two addi-
tional families, the parents were first cousins, suggesting
AR inheritance.

Aicardi syndrome
Aicardi syndrome (AS) is a rare neurodevelopmental

disorder characterized by: pathognomonic congenital
chorioretinal lacunae; infantile spasms; a complex brain
malformation including total or partial agenesis of the cor-
pus callosum, cortical dysgenesis such as polymicrogyria
and periventricular heterotopia, and intracranial cysts;
and often occurrence of costovertebral defects (Aicardi,
2005). AS is X-linked dominant, since it occurs only in
individuals with two X chromosomes; indeed, the syn-
drome has been reported only in girls and exceptionally in
two boys with XXY karyotype (Aicardi, 2005). In a series
of 23 girls with AS, magnetic resonance imaging (MRI)
findings showed consistent presence of polymicrogyria
that was predominantly frontal in 21 subjects (91%)
(Hopkins et al., 2008).

Goldberg-Shprintzen syndrome (GOSHS) and
KIAA1279 mutations

GOSHS (microcephaly, mental retardation, facial dys-
morphism, iris coloboma, and Hirschsprung’s disease) can
be associated with bilateral generalized polymicrogyria
and loss of parenchymal volume that is prominent in the
frontoparietal regions. A novel locus has been identified
on 10q21.3–q22.1 with mutations in the KIAA1279 gene.
The multitissue KIAA1279 mRNA is ubiquitously
expressed in the adult central nervous system (CNS), and
its protein is a member of the tetratricopeptide repeats
(TPRs) protein family, whose structural motifs are
involved in mediation of protein–protein interactions
(Brooks et al., 2005; Ohnuma et al., 1997).

Difficulty of distinguishing pachygyria
from polymicrogyria

Polymicrogyria and pachygyria may be difficult to dis-
tinguish on MRI because the cortical thickness can appear
to be increased and the gyri can appear broad and smooth

in polymicrogyria as they are in pachygyria. However the
characteristic of polymicrogyria is the irregularity of the
cortex (well visualized on high-definition T1 slices), asso-
ciated with complete distortion of the organization of the
sulci and gyri in the affected region. In contrast, pachygy-
ria shows a thickened cortex, always symmetric, with nor-
mally positioned but reduced number of sulci (C Raybaud
2009, personal communication).

Malformations showing an anterior to posterior
(a>p) gradient of severity

These mainly include various types of lissencephaly
(LIS), recently reclassified (Jissendi-Tchofo et al., 2009),
most of which are genetically defined.

The agyria–pachygyria/band heterotopia continuum
LIS and subcortical band heterotopia (SBH) are caused

by deficient neuronal migration. Several genes have been
identified as crucial in migration, and specific patterns of
LIS, with or without other brain or somatic malformations,
have been associated with each of these genes.

Both the LIS1 gene (OMIM 601545) at 17p13.3 and the
DCX gene (OMIM 300121) at Xq22.3, encoding for
microtubule associated proteins, can cause classical LIS
and/or SBH, inherited as autosomal dominant or X-linked
dominant forms, respectively. A continuum from absent
gyri (agyria) or reduced gyration (pachygyria) to SBH
may occur, and is further classified into six grades
(Dobyns & Truwit, 1995); the DCX-related LIS and SBH
are more severe in the anterior brain (a > p gradient),
whereas the LIS1-related LIS and SBH are more severe
posteriorly (p > a gradient) (Dobyns et al., 1999).

LIS and SBH associated with LIS1 gene mutations
occur equally in both genders and are usually sporadic,
whereas LIS and SBH associated with DCX mutations can
be observed in several members of the same family, LIS
occurring primarily in hemizygous males and SBH
primarily in heterozygous females (Pinard et al., 1994;
Andermann & Andermann, 1996; Dobyns et al., 1996;
D’Agostino et al., 2002; Guerrini et al., 2003; Guerrini &
Parrini, 2009).

DCX mutations: genotype–phenotype correlations
Patients with LIS, primarily males, typically have

global developmental delay, infantile-onset seizures, and
severe mental retardation. Patients with SBH, primarily
females, may be asymptomatic or show variable degrees
of cognitive disabilities and epilepsy.

Severe expression of DCX mutations causes a>p LIS in
males and a>p SBH in females. These tend to be sporadic
because the patients do not reproduce. Milder phenotypes
allow reproduction and, therefore, tend to be familial
(Gleeson et al., 1999). A milder expression of DCX muta-
tions causes a>p pachygyria in males and milder SBH in
females. The mildest expression of DCX mutations causes
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isolated SBH in boys and mild reduction in volume of the
frontal lobes in females (Guerrini et al., 2003).

The severity of the phenotype is correlated with the
functional consequences of the mutation, depending on
the presence of protein truncation mutations versus single
amino acid substitutions, the localization of the mutation
in critical functional domains of the DCX protein, the
amount of X-inactivation, and possible somatic or germ-
line mosaicism (Gleeson et al., 1999, 2000; Matsumoto
et al., 2001).

In contrast to the protein truncation mutations (either
nonsense or frameshift) that appear to occur throughout
the predicted DCX protein and are more often associated
with a severe phenotype, single amino acid substitutions
(mainly missense mutations) are identified more fre-
quently in inherited SBH and appear to cluster in two criti-
cal regions for the DCX protein, representing two
evolutionarily conserved domains: the tandem repeats N-
DC (R1) and C-DC (R2) (Sapir et al., 2000; Taylor et al.,
2000), both essential for correct tubulin interaction.

DCX mutations may be observed in mothers or maternal
relatives of male patients with isolated SBH. These
women may have mild mental retardation with or without
epilepsy, or be asymptomatic, and they may have normal
brain MRIs. This mild or normal phenotype has been asso-
ciated with mutations with mild functional consequences
or favorable X-inactivation skewing (D’Agostino et al.,
2002; Guerrini et al., 2003; Guerrini & Parrini, 2009).
Therefore, DCX mutations may cause nonsyndromic men-
tal retardation.

Recently, genotype–phenotype correlations were
studied in 33 males with agyria–pachygyria/SBH and a
hemizygous DCX mutation. Nineteen were missense
mutations, most of which were clustered in the two evolu-
tionarily conserved domains of doublecortin: N-DC and
C-DC. The missense mutations in the C-DC domain
tended to lead to less severe LIS, for example, anterior
pachygyria (grade 4b), and SBH with anterior pachygyria
(grade 5); SBH alone (grade 6) was associated with
somatic mosaicism in the DCX gene (Leger et al., 2008).

Other subtypes of LIS
Termed variant LIS in the 2009 classification (Jissendi-

Tchofo et al., 2009), these subtypes encompass X-linked
LIS with abnormal genitalia (XLAG) due to mutations in
the ARX gene, LIS with cerebellar hypoplasia due to
RELN mutations, and LIS due to VLDLR mutations; all
three show an a>p gradient as well.

Cobblestone and cobblestone-like cortical malformations
Among the group of cobblestone lissencephalies,

characterized by congenital muscular dystrophies with
CNS involvement, and comprising Fukuyama congenital
muscular dystrophy (FCMD), Walker-Warburg syn-
drome, and muscle-eye-brain disease, FCMD is notable

for an unlayered frontal polymicrogyria, in addition to
cobblestone dysplasia (Jissendi-Tchofo et al., 2009).
Some of the cobblestone-like cortical malformations,
including congenital glycosylation type 2 (CDG type 2)
and the tubulinopathy TUBB2B show an a>p gradient
of severity (Van Maldergem et al., 2008; Jaglin et al.,
2009).

Conclusions

The frontal lobes, encompassing one-third of the hemi-
spheric volume in humans, have been shown to harbor an
increasing number of malformations. Several of these
malformations can now be identified or diagnosed during
life, allowing a more accurate genetic counseling.
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