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One of the biggest challenges in neuroscience is illuminating the architecture of developmental brain disor-
ders, which include structural malformations of the brain and nerves, intellectual disability, epilepsy, and
some psychiatric conditions like autism and potentially schizophrenia. Ongoing gene identification reveals
a great diversity of genetic causes underlying abnormal brain development, illuminating new biochemical
pathways often not suspected based on genetic studies in other organisms. Our greater understanding of
genetic disease also shows the complexity of allelic diversity, in which distinct mutations in a given gene
can cause awide range of distinct diseases or other phenotypes. These diverse alleles not only provide a plat-
form for discovery of critical protein-protein interactions in a genetic fashion, but also illuminate the likely
genetic architecture of as yet poorly characterized neurological disorders.
Human Genetic Diseases Represent Saturation
Mutagenesis
The accelerating pace of human disease gene identification

continues to amaze and impress. The notion that the six to seven

billion humans on our planet can be conceptualized as a satura-

tion mutagenesis experiment of nature, in which every gene in

the genome has been mutated at least once and can potentially

be scored for phenotypes, is not new (Brenner, 2003; Walsh,

1999). However, it has been brought into clearer focus by the

accelerating pace of disease gene identification. In an experi-

mental situation in which mutations are deliberately created in

animal models (e.g, worms, flies, or zebrafish), a conventional

Poisson statistic provides a rough guide: when three indepen-

dent alleles of an average-size gene have been observed, 95%

of other genes in the genome have been mutated; and when

five independent mutant alleles are observed, 99% of other

genes have been mutated. Extrapolating these animal model

experiments to humans, where there are many well-character-

ized diseases with dozens or hundreds of independent alleles

identifiable as causing a similar disease phenotype (Figure 1

and Table 1), instructs us that humans far exceed the criteria

needed to be certain that all genes in the genome have been

mutated repeatedly.

Many diseases represent special mutations that do not merely

compromise function, but might also create a new, abnormal

biochemical function or constitutively activate the protein or

might create a dominant-negative allele. As we will review, these

unusual mutations are often recurrent, meaning that the identical

mutation has occurred multiple times in different unrelated

patients around the world. Since the probability of mutation at

one codon is similar to the probability of mutation at another

codon (save for the greater tendency for the sequence ‘‘CG’’

to bemutated than other dinucleotide combinations), this implies

that the other codons in the gene are mutated in different

patients somewhere in the world, although potentially resulting

in a different special mutation and a different phenotype. More-
over, for the most densely studied genes, such as globin genes,

it appears that virtually every codon in the gene has had a corre-

sponding disease-causing mutation observed, suggesting that

almost every codon in the genome is present in a mutated

form in someone, somewhere. Therefore, humans represent

the richest sort of saturation mutagenesis experiment, one that

we are unlikely to observe in any animal model anytime soon.

Here we will review, using examples from human develop-

mental brain diseases, how the density and diversity of muta-

tion—which we are only beginning to decode—can eventually

be harnessed to go beyond merely associating a gene with

a disease. The unusual mutations create linkages from protein

to protein, by identifying special protein interaction interfaces,

or can represent something like conditional mutations of mice,

in which the expression of a gene may be removed only from

a particular place or domain. This range of mutation, a delicious

biological tool for dissecting mechanisms for the neuroscientist,

is also an uncomfortable fact of life for the human geneticist: this

mutational diversity, or heterogeneity, helps explain the as yet

unexplored allelic diversity of human neurological disorders

and the inherent difficulty in identifying underlying causes of

many neurogenetic diseases.

Loss of Function Mutations Implicate Essential Gene
Functions
DCX illustrates perhaps a typical mutational spectrum for a gene

that basically causes one disease, albeit one with milder and

more severe forms. Null mutations in DCX cause a profound

defect in neuronal migration in males, called lissencephaly, in

which the brain is smooth rather than folded, reflecting severely

abnormal neuronal organization because of defects in migration

of essentially all cortical neurons (des Portes et al., 1998; Glee-

son et al., 1998). Since DCX is an X-linked gene, females show

a milder condition in the heterozygous state; they have a rela-

tively normal appearing cortex, with a second, double cortex in

the subcortical white matter. Neurons appear to migrate either
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Figure 1. Comparison of Mutational Patterns, and Primary Amino Acid Conservation, for Several Genes with Important Neurodevelopmental
Functions
Schematics of each protein are illustrated with the name of the protein and its abbreviation to the upper left followed by mode of inheritance of disease (XL =
X-linked, AD = autosomal dominant, AR = autosomal recessive). Proteins are ordered according to length, with the shortest on the top and the longest on the
bottom, and are presented in three differently scaled groups, each based on the amino acid scale bar found to the upper right of the group. ‘‘Stop’’ mutations
(including nonsense, frameshift, intragenic deletions, or splicing alleles that cause frameshifts) are represented by red dots positioned below the protein corre-
sponding to the location of the mutation. Missense mutations are represented by arrowheads positioned above the protein corresponding to the location of the
mutation. Each dot and arrowhead represents a unique mutation. Additional arrowheads aligned directly above (or red dots aligned directly below) one another
indicate distinct mutations that have been reported at the same amino acid residue (e.g., in KIF21A, the mutation altering an amino acid residue in the distal motor
domain has been identified in three unrelated patients). Some arrowheads or red dots are unevenly stacked; they represent unique mutations that, for reasons of
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normally or abnormally depending upon which X chromosome is

active. Cells that transcriptionally inactivate the X chromosome

carrying the X-linked mutation seem to have normal migration

because they have normal levels of DCX activity, although

normal cells can occasionally be obstructed by Dcx-deficient,

arrested neurons (Bai et al., 2003). Cells that inactivate the

normal DCX gene arrest in the subcortical white matter because

they lack DCX activity. Most patients show the full-blown brain

malformation, although mild alleles that only partially impair

DCX function can cause seizures with a normal-looking brain,

or even cause isolated mental retardation with a normal-looking

brain (Guerrini and Marini, 2006; Guerrini et al., 2003).

Mutations in DCX that block the formation of a full-length

protein include nonsense alleles, frameshift alleles, intragenic

deletions, and splicing alterations that result in frameshift alleles.

Wewill refer to these protein-truncatingmutations collectively as

‘‘Stop’’ mutations. Alternatively, missense mutations that alter

individual amino acids might preserve a full-length protein but

render it dysfunctional. Of the more than 60 known mutations

of DCX (many of which are summarized schematically in Fig-

ure 1), the missense alleles slightly predominate over the Stop

alleles. Stop alleles are distributed quite evenly over the length

of the protein, in no obvious pattern, and wherever the protein

is truncated, the result is an equally severe phenotype. This

suggests that full-length DCX is required for normal function

and that anymutation that truncates the protein blocks its normal

function.

In contrast to the even distribution of Stop mutations in DCX,

missense mutations are notably clustered in two repeated

domains, called ‘‘doublecortin’’ domains (N-DC and C-DC in

Figure 1). There are a few missense mutations that affect the N

terminus of the protein or the short linker separating the double-

cortin domains, but strikingly there are no missense mutations

over the C-terminal 100 amino acids of the protein. The impor-

tance of the doublecortin domains for binding of DCX protein

to microtubules was shown on the basis that these missense

mutations block the ability of DCX to bindmicrotubules or tubulin

(Gleeson et al., 1999; Sapir et al., 2000; Taylor et al., 2000). The

clustering of missense mutations in the doublecortin domains

strongly suggests that the three-dimensional structure of these

domains is essential for the normal function of DCX, which is

to bind and organize microtubules in migrating neurons (Kim

et al., 2003; Reiner et al., 2006). On the other hand, the function

of the C terminus is less clear. The Stop mutations suggest that

the C terminus is essential, but the absence of C-terminal

missense mutations suggests that the particular amino acid

sequence of this region may be less important, or perhaps that
scale, were not able to be aligned horizontally along the protein. When multiple un
times that mutation has been independently observed appears above the arrow (o
a distinct disease phenotype, and red arrowheadsmean that the missense mutati
phenotype results frommutations in a given protein, the arrowheads and circles ar
in the intermediate domain of TUBB3, ten unrelated patients with the same pheno
other unrelated patients share a distinct phenotype and a different missense mu
tracts were made by aligning the most homologous amino acid sequences availa
with the ClustalX software package with default settings. Accession numbers of
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Chicken ROBO3 andWDR62 sequences as well as zebrafish DCX sequence were
CHN1 and ROBO3 were predicted with the UCSC genome browser multiple-seq
(uc# noted in Table 1), and the dog sequence for KIF21a was predicted from ge
missense mutations in the C terminus might cause a different

disease.

Like many X-linked mutations, autosomal mutations often act

in a recessive fashion, except that for autosomal-recessive

genes both copies of the genemust bemutated in order to cause

disease, with mutation of one allele being asymptomatic and

disease generally caused by an absence of functional protein.

This pattern is nicely illustrated by homozygous or compound

heterozygous mutations in the ROBO3 gene (encoding

the axon guidance receptor ROBO3/Rig-1), which cause the

disorder horizontal gaze palsy with progressive scoliosis

(HGPPS) (Chan et al., 2006; Jen et al., 2004). HGPPS is charac-

terized by absent horizontal gaze from birth (an inability to move

the eyes to the left or right) followed by development of scoliosis,

or curvature of the spine, within the first decade of life. In addi-

tion, axons in the descending corticospinal and ascending

sensory tracts fail to cross the midline in the medulla, and thus

do not decussate to the opposite side as they normally do in

unaffected individuals (Jen et al., 2004). This is similar to the

Robo3�/� mouse, in which both axons and neurons in the devel-

oping hindbrain and spinal cord fail to decussate across the

midline (Marillat et al., 2004; Sabatier et al., 2004).

Similar to DCX, human mutations in ROBO3 represent

a roughly equal mixture of Stop mutations and missense muta-

tions (Figure 1). The clinical features of patients with missense

mutations cannot be distinguished from those with Stop muta-

tions, suggesting that all mutations eliminate the function of

the ROBO3 protein. Also similar to DCX, the missense changes

predominate at the N terminus of the protein, where they high-

light extracellular domains of this transmembrane receptor that

are essential for protein-protein interactions. Only one mutation,

a Stop, has been identified in the C terminus of ROBO3 (again

implying that the full-length protein is essential for normal func-

tion). Once again, the notable absence of missense mutations

at the C terminus of the protein suggests that the primary amino

acid sequence of the C-terminal intracellular portion may be less

important, or that mutations in this portion of the protein cause

a different disease.

A pattern of mutation distinct from ROBO3 is seen in another

autosomal-recessive disorder of brain development, micro-

cephaly (i.e., a very small brain). The gene most commonly

mutated in human microcephaly is ASPM (abnormal spindle

microcephaly) (Bond et al., 2002, 2003; Nicholas et al., 2009).

ASPM encodes a huge protein with many tandem repeats of

20–24 amino acids that begin with isoleucine-glutamine, hence

named ‘‘IQ’’ repeats. The Aspm protein localizes to the mitotic

spindle and appears essential for normal mitotic spindle function
related patients have been reported with the identical mutation, the number of
r below the red dot). Within each protein, each arrowhead color corresponds to
on results in the same phenotype as the Stop mutation(s). When more than one
e color codedwith a corresponding key to the right of the protein. For example,
type have been reported to harbor the identical missense mutation, while two
tation that alters the same amino acid but to a different residue. Conservation
ble for each gene for human, chimpanzee, dog, mouse, chicken, and zebrafish
the sequences used are listed in Table 1. Complete sequence data for FLNA,
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uence alignment tool based on the comparative genomics conservation tracts
nome sequence with N-SCAN.
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Table 1. Protein Motifs, Key Abbreviations, and Sequence

Accession Numbers for Conservation Tracts

Conservation

Tract Protein Motifs

Sequence Accession

Numbers

Doublecortin

(DCX)

N-terminal and C-

terminal doublecortin

domains

NP_000546.2,

XP_529107.2,

XP_853182.1,

NP_034155.2,

NP_989666.1

Chimaerin 1

(CHN1)

N-terminal Src homology

2 (SH2), phorbol esters/

diacylglycerol binding

(C1), and Rac GTPase

activating (RacGAP)

domains

uc002uji.1_hg18,

uc002uji.1_panTro2,

uc002uji.1_canFam2,

uc002uji.1_mm9,

NP_001012970.1,

NP_998165.1

Tubulin, beta

3 (TUBB3)

NP_006077.2,

NP_001038974.1,

XP_860049.1,

NP_075768.1,

NP_998655.1,

NP_001026769.1

Roundabout

homolog 3

(ROBO3)

Immunoglobulin-like (Ig),

fibronectin-like (Fn3),

transmembrane, and

conserved cytoplasmic

(CC) domains

ROBO3 NP_071765.2,

uc001qbc.1_ponAbe2,

XP_546425.2,

XP_001476890.1,

NP_571557.1

WD repeat

domain 62

(WDR62)

WD40 (W) domains NP_001077430.1,

XP_512609.2,

XP_853669.1,

XP_896469.1,

XP_699579.2.

Kinesin family

member 21A

(KIF21A)

Motor (M), coiled-coil

(CC), and WD40 (W)

domains

NP_060111.2,

XP_002823145.1, N-

SCAN (chr27.18.003.a),

NP_060111.2,

XP_001920258.1,

XP_415936.2.

FilaminA,

alpha (FLNA)

Calpain-homology (CH)

and immunoglobulin-like

(Ig) domains

NP_001104026.1,

XP_001091073.1,

XP_867483.1,

NP_034357.2,

NP_989905.1,

XP_001922206.1.

Abnormal

spindle

homolog,

microcephaly

associated

(ASPM)

Calpain-homology (CH)

and isoleucine-glutamine

repeat (IQ) domains

NP_060606.3,

NP_001008994.1,

XP_537130.2,

NP_033921.3,

XP_001923712.1,

XP_422197.2.

Key abbreviations for Tubulin, beta 3 (TUBB3): CFEOM, congenital

fibrosis of the extraocular muscles; FW, facial weakness; PN, peripheral

neuropathy; DD, intellectual and social developmental delay; and CJC,

congenital joint contractures.
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(Fish et al., 2006; Kouprina et al., 2005). In striking contrast to

ROBO3 and DCX mutations, however, all but one of the more

than 90 knownmutations inASPM associatedwithmicrocephaly

represent Stop mutations of one kind or another (Figure 1) (Bond

et al., 2002; Kousar et al., 2010; Nicholas et al., 2009). Once

again, these Stop mutations occur virtually anywhere along the
248 Neuron 68, October 21, 2010 ª2010 Elsevier Inc.
coding region of the gene, with no apparent relationship between

the location of the mutation and the severity of the disease. Only

a singlemissensemutation has ever been reported inASPM, and

it alters one of the highly conserved ‘‘Q’’ codons in one of the IQ

repeats (Gul et al., 2006). A similar pattern of mutation is seen in

several other microcephaly genes that comprise other compo-

nents of the mitotic spindle: CDK5RAP2, CENPJ (Bond et al.,

2005), and STIL (Kumar et al., 2009), in which most or all known

mutations are Stop mutations.

A potential explanation for the apparent absence of missense

mutations in ASPM is provided by recent analysis of another

microcephaly gene, WDR62. This gene has been identified as

causative for several distinct but related conditions: Stop muta-

tions cause severe phenotypes, in which severe microcephaly

is associated with abnormal gyral pattern of the brain, clefts in

the brain (schizencephaly), and abnormal neuronal migration,

suggesting markedly abnormal histological organization of the

brain (Bilgüvar et al., 2010) (Nicholas et al., 2010; Yu et al.,

2010). In contrast, some missense mutations in the same gene

are responsible for a milder form of microcephaly, with less

severe reduction of brain size and less evidence for abnormal

brain histology (Bilgüvar et al., 2010; Nicholas et al., 2010; Yu

et al., 2010) (Figure 1). Hence, it appears that complete loss of

gene function (due to Stop mutations or occasional missense

changes that severely block protein function) and partial loss of

function lead to different conditions that are not always easily

recognized as allelic. Therefore, one possibility is that missense

mutations in ASPM, STIL, CDK5RAP2, or CENPJ also exist, but

cause a milder disease that has so far not been recognized as

allelic to the more severe syndromes. An alternate explanation

is that perhaps the length of these proteins ismore critical to their

function than is their primary amino acid sequence.

Comparative genomics provides some insight into thepatterns

of disease-causingmutations, since interspecies conservation of

primary amino acid sequence reflects evolutionary selection, i.e.,

the extent to which the exact amino acid sequence is essential to

normal function. Interspecies conservation of amino acid

sequence reflects the fact thatmost changesof conserved amino

acids are deleterious in that they reduce reproductive fitness, re-

flecting a decreased likelihood of their transmission to the next

generation. The most common cause of reduced human fitness

is of course disease, especially when we are talking about the

brain. Aswe recovermore andmore diseasemutations, the theo-

retical concept of negative evolutionary selection, inwhich amino

acid sequence tends to be conserved because alterations cause

reduced fitness, begins to come alive. In the case of DCX, the

relative absence of disease-causing mutations in the C terminus

correlates with a relative lack of amino acid conservation in this

region between species. This contrast suggests that there may

be diseases associated with missense mutations of the C

terminus, but that these diseases have not yet been recovered,

i.e., patients with these other diseases have not yet had their

DCX gene sequenced. Alternatively, many polymorphisms at

the C terminus of DCX may not be deleterious, i.e., don’t cause

any disease. A very similar pattern is seen with ROBO3, where

the lack of missense mutations at the C terminus is matched by

a relatively lower level of amino acid conservation at the C

terminus of the protein.
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Interspecies comparisons of the ASPM microcephaly gene

have generated an entire field unto itself, with evidence from

multiple labs suggesting that the overall amino acid sequence

is under less strong negative selection than most human

proteins. In fact, ASPMmay have been a target of positive evolu-

tionary selection, with greater changes in amino acid sequence

between humans and nonhuman primates than most genes,

suggesting a potential role of ASPM in the evolution of the larger

brains that characterize humans (Evans et al., 2004; Kouprina

et al., 2004; Mekel-Bobrov et al., 2005; Yu et al., 2007, 2009;

Zhang, 2003). Analysis of amino acid conservation of ASPM

among vertebrates shows remarkably low conservation

compared to other neurological disease genes (Figure 1). Large

chunks of the protein near the N terminus, and within the IQ

repeats, show extremely low conservation because these

segments of the protein are lacking in rodents and nonmammals

altogether. On the other hand, the region surrounding the calpo-

nin homology (CH) domains is extremely highly conserved, yet

still no missense mutations have been seen here yet. Thus, the

degree of amino acid differences between species does not

suffice to explain the scarcity of missense mutations identified

in all of these genes in patients with known phenotypes, suggest-

ing that some missense changes may have other phenotypic

consequences.

Dominant mMutations Can Implicate Specific
Protein-Protein Interactions
While some dominant mutations function through reduced gene

dosage, many are missense mutations that cause disease by

creating new or aberrant functions in a protein. Thus, the

patterns of dominant mutations are often very different from

those of autosomal or X-linked recessive mutations. This is illus-

trated nicely by the special mutations identified in CHN1,

KIF21A, and TUBB3, each of which alters rather than eliminates

the function of the encoded protein, causes aberrant axon

growth and guidance, and results in an autosomal-dominant

complex eye movement disorder.

Heterozygous mutations in CHN1 cause stalling of axons of

the abducens nerve, one of the three cranial nerves that control

eye movement, and result in a stereotypical pattern of abnormal

horizontal gaze referred to as Duane retraction syndrome (Chan

et al., 2010; Miyake et al., 2008). CHN1 encodes a2-chimaerin,

a RacGAP signaling molecule that turns active GTP-bound Rac

off by enhancing the conversion of GTP-bound Rac to inactive

GDP-bound Rac and has been shown to serve as an effector

for axon guidance (Brown et al., 2004; Iwasato et al., 2007).

CHN1mutations are all missense, the opposite of ASPM. At first

glance, the mutations appear to be somewhat randomly scat-

tered onto the 2D structure of the protein, residing both within

and between its known functional domains (Figure 1). These

are, however, special mutations as each has been shown to hy-

peractivate a2-chimaerin’s normal function and to pathologically

lower RacGTP levels in the cell (Miyake et al., 2008). Most muta-

tions appear to do this by altering amino acid residues involved in

intramolecular interactions that normally stabilize the closed,

inactive conformation of the molecule. By substituting a different

amino acid, the inactive conformation is destabilized and the

activity of the signaling molecule is pathologically enhanced.
Heterozygous mutations in KIF21A result in a different auto-

somal-dominant stereotypical congenital eye movement

disorder, congenital fibrosis of the extraocular muscles (CFEOM)

type 1, which probably results from the stalling ormisguidance of

axons in another ocular cranial nerve (the oculomotor nerve) that

normally innervates several extraocular muscles important for

horizontal and vertical gaze (Yamada et al., 2003). KIF21A

encodes a kinesin motor protein that transports cargo from the

neuronal cell body to the developing axon’s growth cone by

‘‘walking’’ along microtubules (Marszalek et al., 1999). KIF21A

mutations are all missense, are typically recurrent, and often

arise as de novo mutations in children of unaffected parents

around theworld. As highlighted in Figure 1, these raremutations

repeatedly alter specific highly conserved amino acid residues

located within two regions of this very large protein, the third

coiled-coil domain of the stalk region and the distal motor

domain. Remarkably, the most common missense mutation,

2860C > T (R954W), is present in 61 of the 84 patients reported

to date, and 72 of the 84 have mutations altering the KIF21A

R954 residue. This specificity leads to the prediction that the

mutations disrupt specific protein-protein interactions, and

thus that they provide a biological tool for dissecting both

disease mechanism and the subfunctions of the altered kinesin

domains. Notably, unaffected control individuals have been

found to harbor missense polymorphisms that map to the distal

stalk of KIF21A. Unlike the disease mutations, these nonpatho-

genic changes alter amino acids that are poorly conserved in

other species and thus are not under negative evolutionary

selection and are not critical to KIF21A function (Yamada et al.,

2003). In contrast, no KIF21A Stop mutations have been

reported in CFEOM1 patients or controls, suggesting that

heterozygous Stop mutations may be embryonic lethal or result

in a different, unrecognized human disorder.

Finally, heterozygous missense mutations in TUBB3 cause

a third congenital eye movement disorder, CFEOM type 3,

that, in some patients, is indistinguishable from the KIF21A

phenotype and also results from aberrant guidance of oculo-

motor cranial nerve axons (Tischfield et al., 2010). TUBB3

encodes the neuronal-specific b-tubulin isotype III, a component

of the microtubule cytoskeleton on which kinesins walk. Similar

to KIF21A disease mutations, TUBB3mutations are also special:

they are missense and often arise de novo, and the same muta-

tion is found among multiple unrelated patients (Figure 1). Unlike

mutations in CHN1 and in KIF21A that result in isolated and

stereotypical ocular phenotypes, these TUBB3 mutations

demonstrate allelic diversity, with specific missense mutations

causing additional phenotypes, including facial weakness,

progressive peripheral neuropathy, congenital joint contrac-

tures, and/or developmental disabilities (Figure 1) (Tischfield

et al., 2010). Studies of both humans and a mouse model reveal

aberrant axon growth and guidance without evidence of errors in

cortical neuronal migration. All mutations increase microtubule

stability, while a subset appears to alter microtubule-kinesin

interactions. Thus, these repetitive human mutations highlight

and hence identify interfaces on TUBB3 that are essential to

specific subfunctions of this tubulin isoform that are critical to

the development and maintenance of axons in both the central

and the peripheral nervous system.
Neuron 68, October 21, 2010 ª2010 Elsevier Inc. 249
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Some Genes Are Subject to Multiple Types of Mutations
Associated with Different Diseases
If specific dominant heterozygous mutations in CHN1, KIF21A,

or TUBB3, all three of which encode proteins expressed in

neurons throughout the developing and mature nervous system,

lead to new enhanced or aberrant protein function that cause

specific eye movement defects, what would we expect to be

the effects of different mutations altering other conserved resi-

dues in these same genes? For TUBB3, this question was

answered, in part, by the recent report of a second set of domi-

nant missense human mutations that result in less stable, rather

than more stable, microtubules and cause malformations of

cortical development secondary to neuronal migration defects,

in the absence of CFEOM type 3 (Figure 1) (Poirier et al., 2010).

Thus, this new set of missensemutations probably alter residues

essential to different subfunctions of the TUBB3 protein.

Although human loss-of-function mutations have not been

identified for CHN1, KIF21A, or TUBB3, we might get insights

of what to expect from engineered mouse models. Indeed,

Chn1�/�mice survive and have a completely different phenotype

from the phenotype found to result from missense mutations in

humans (Miyake et al., 2008); the mice have misguidance not

of cranial but of corticospinal axons, resulting in an abnormal

hopping gait (Iwasato et al., 2007). This suggests that human

CHN1 Stop mutations might underlie a yet-to-be-identified neu-

romotor disorder.

There are other developmental examples where different sorts

of mutations in the same gene can cause two or more different

diseases, often with almost no overlap, as a result of differing

biochemical mechanisms. Mutations in FLNA are one nice

example: FLNA mutations include loss of function, gain of func-

tion, and partial loss of function, and each mutation type results

in a distinct phenotype (Feng andWalsh, 2004b) (Figure 1). FLNA

encodes FilaminA, and the first known disease associated with

loss of FLNA function was periventricular heterotopia, a neuronal

migration disorder in which neurons fail to migrate out of the

ventricular zone during prenatal development (Fox et al., 1998).

The disorder is X linked, typically prenatally lethal in males, and

is associated with many Stop mutations that block normal

protein translation from that locus (as opposed to making a trun-

cated protein) (Sheen et al., 2001). FLNA is essential for normal

heart and vascular development as well, explaining the prenatal

lethality of the condition (Feng et al., 2006; Hart et al., 2006).

Several FLNA missense mutations cause an indistinguishable

phenotype, presumably by also acting as heterozygous null

mutations (Sheen et al., 2001; Solé et al., 2009), and these

tend to cluster in the exons encoding the first calpain-homology

(CH) domain, required for actin binding (Parrini et al., 2006).

Occasionally male patients who harbor FLNA mutations survive

and have periventicular heterotopia; these mutations are often

missense changes, or alleles that only truncate the extreme C

terminus, suggesting that theymay create hypomorphic proteins

that retain some residual function (Parrini et al., 2006; Sheen

et al., 2001; Solé et al., 2009).

After the initial discovery of null mutations associated with

periventricular heterotopia, an amazing array of skeletal dyspla-

sias have been described in association with FLNA mutations,

including many with unusual or recurrent missense mutations;
250 Neuron 68, October 21, 2010 ª2010 Elsevier Inc.
these include otopalataldigital (OPD) syndrome I and II, fronto-

metaphyseal dysplasia, and Melnick-Needles syndrome

(Robertson, 2005; Robertson et al., 2003). Even more recently,

additional specific mutant alleles of this same gene have been

associated with inherited X-linked myxomatous valvular

dystrophy (XMVD) affecting primarily the heart (Kyndt et al.,

2007) and with terminal osseous dysplasia (TOD), which has so

far been seen with a single mutant allele that has recurred in

separate families at least six times (Sun et al., 2010). Many of

these disorders do not show periventricular heterotopia, sug-

gesting that the mutations do not remove FilaminA function but

may alter it. Only one reported allele causes both OPD and peri-

venticular heterotopia (Zenker et al., 2004). Many OPDmutations

cluster in the second CH domain, which also regulates actin

binding. Recent work suggests that at least some of the OPD

missense mutations actually enhance the binding of FilaminA

to F-actin in vitro, resulting in a gain-of-function mechanism

(Clark et al., 2009), whereas the periventricular heterotopia

missense mutations presumably disrupt actin binding.

The large number of disease-associated alleles found in FLNA

might be predicted by the very high conservation of its amino

acid sequence between species. Moreover, the seven or more

distinct genetic disorders resulting from different mutations in

the same gene suggest that FilaminA has diverse interaction

with many different other protein networks in distinct develop-

mental contexts, and the long list of filamin-interacting proteins

further supports this hypothesis (Feng andWalsh, 2004a). These

allelic disorders provide direct pointers into distinct signaling

pathways. They also prompt the question of the hidden allelic

diversity of other genes, in which a single gene can be affected

in many ways to cause widely divergent phenotypes.

How Do the Missing Mutant Alleles Map onto
Uncharacterized Diseases?
Comparisons of the sorts of mutations that cause developmental

phenotypes reveal remarkable differences from gene to gene,

given that the pattern of disease-associated mutation reflects

not only patterns of DNA mutation, but also structures and func-

tions of proteins, and the extent to which amino acid sequence is

conserved. Some genes (ROBO3, DCX, FLNA) cause develop-

mental disorders as a result of apparently simple loss-of-func-

tion mechanisms, either by Stop mutations or by missense

changes that are presumably also disabling. FLNA shows one

phenotype due to loss of function, but other phenotypes due

to gain or alteration of function, while TUBB3 shows distinct

phenotypes due to different gain or alteration in function, with

specific missense mutations targeting specific protein-protein

interactions. Dominant mutations in KIF21A and CHN1 appar-

ently also act by disrupting normal protein-protein interactions.

Notably, simple loss-of-function mutations in TUBB3, KIF21A,

and CHN1 have not yet been observed and might have

completely different phenotypes. Thus, if we assume that hu-

mans are saturated for mutations at most codons (as well as

presumably some, but certainly not all, noncoding segments),

the depth of mutational analysis in humans allows one to begin

to ask questions about what alleles we are missing. For diseases

that are familiar as dominant, gain-of-function conditions,

are there additional unrecognized phenotypes resulting from
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gain-of-function mutations altering a different set of conserved

amino acids? What is the loss-of-function phenotype in that

same gene, and does it look at all like the dominant disease?

In some cases it might, yet in others it could be embryonically

lethal or have a totally different phenotype. Or, if we have

observed the null phenotype for a gene, then what are that

gene’s hypomorphic phenotypes, since our previous analysis

suggests that hypomorphic mutations frequently exist? For

many genes with essential roles in brain development, it is likely

that the possible range of alleles has not yet been identified, and

presumably many of these other types of alleles disrupt brain

function but remain so far unrecognized.

So then we might ask, what diseases, or other phenotypes,

do these missing alleles cause? Where does the burden of

unexplained neurogenetic disease lie? In the case of severe

developmental disorders of the brain, associated with neonatal

presentations with epilepsy, brain malformations, or mental

retardation, these disorders are remarkably well characterized,

with clinicians having a greater than 60% chance of identifying

a specific causative condition or responsible gene (Rimoin and

Emery, 2007). For milder forms of intellectual disability, the yield

of genetic investigation is lower, approximately 50% (Rimoin and

Emery, 2007). For autism, which is a milder and more heteroge-

neous condition, intensive genetic investigation typically reveals

a specific (genetic) cause (or a specific, complex interaction of

rare and/or common alleles) in 15%–20% of cases (Pinto et al.,

2010; Shen et al., 2010), leaving the great majority as yet unex-

plained. And finally, for the mildest learning disorders and

psychiatric conditions, it is safe to say that a specific genetic

contribution of less than 5% can presently be explained, leaving

these disorders almost completely uncharacterized genetically

(Faraone and Mick, 2010; Owen et al., 2010).

Recent studies of the genetics of autism spectrum disorders

(ASDs), described in greater detail in another review in this issue

of Neuron (State, 2010), show how heterogeneous the milder

developmental disorders might be. Perhaps 5% of children

with ASD have mutations in Mendelian autism genes that typi-

cally cause ASD in some children and intellectual disability in

other children; these genes include FMR1, MECP2, NLGN2,

NLGN3, ARX, SHANK3, TSC1, TSC2, and others (Walsh et al.,

2008). Heterozygous copy-number variants (CNVs) appear to

be collectively the most common cause of ASD, though esti-

mates of the proportion of the disorder that they are responsible

for range widely frommore than 20% in early studies to closer to

5% in more recent and systematic studies (Sebat et al., 2007;

Shen et al., 2010; Weiss et al., 2009). About a half dozen of these

rare CNVs are recurrent, meaning that deletions or duplications

of the same regions occur in more than one family (16p11.2,

15q, 22q11, 15q13, NRXN1, MECP2), and so are recognizable

as causative when observed in isolation; others appear to be

unique in each family. Common alleles have been described

that might affect predisposition to ASD, but to date they would

account for even less of the known genetic risk (Anney et al.,

2010; Arking et al., 2008; Glessner et al., 2009). These sorts of

heterogeneous disorders might be where we find many of the

miscellaneous missing mutations, and the specific mutations

involved could be individually rare, present in just one or small

numbers of families, and very diverse in their action.
An interesting sort of mutation, found in a few ASD patients

whose parents share common ancestry (and who hence share

more than the usual proportion of their rare genetic mutations),

has recently been described andmay point to a whole new cate-

gory of alleles. These mutations are homozygous deletions,

removing both copies of a stretch of DNA. Homozygous

deletions can remove genes, making them conventional Stop

mutations, but in some patients appear to delete noncoding

DNA containing conserved predicted promoter-enhancer

elements near genes with prominent brain expression (Morrow

et al., 2008). These homozygous noncoding mutations show an

appealing resemblance to conditional mutant alleles in mice,

where the function of a gene might not be compromised in all

places and times, but only where that gene’s expression would

have been controlled by deleted promoter elements. Thus, the

possible mutations that appear to cause ASD are diverse and

heterogeneous not only in the genes involved, but also in the

mechanisms involved (deletion, duplication, conventional point

mutation) and mode of inheritance or absence of inheritance.

With the advent of high-throughput sequencing of the entire

exome, or genome, one of the biggest challenges will be inter-

preting which rare polymorphisms in a person’s DNA are likely

to be causative of disease. There is little doubt that one of the

biggest immediate impacts of high-throughput sequencing in

the clinical setting will be in expanding the range of mutation of

known genes, in addition to new gene identification. Finding

new alleles of known genes is simpler, since we already have

some knowledge of overall gene function, but will provide a rapid

bounty of biological information about interactions and path-

ways as well as causes of disease.
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