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SUMMARY

Cortical development depends on the active integra-
tion of cell-autonomous and extrinsic cues, but the
coordination of these processes is poorly under-
stood. Here, we show that the apical complex protein
Pals1 and Pten have opposing roles in localizing the
Igf1R to the apical, ventricular domain of cerebral
cortical progenitor cells. We found that the cerebro-
spinal fluid (CSF), which contacts this apical domain,
has an age-dependent effect on proliferation, much
of which is attributable to Igf2, but that CSF contains
other signaling activities as well. CSF samples from
patients with glioblastomamultiforme show elevated
Igf2 and stimulate stem cell proliferation in an Igf2-
dependent manner. Together, our findings demon-
strate that the apical complex couples intrinsic and
extrinsic signaling, enabling progenitors to sense
and respond appropriately to diffusible CSF-borne
signals distributed widely throughout the brain. The
temporal control of CSF composition may have crit-
ical relevance to normal development and neuro-
pathological conditions.

INTRODUCTION

Neural development involves a dynamic interplay between cell

autonomous and diffusible extracellular signals that regulate

symmetric and asymmetric division of progenitor cells

(Johansson et al., 2010). In mammalian neural progenitors,

homologs of C. elegans and Drosophila polarity proteins,
including Par3 (partitioning defective protein 3) and Pals1

(protein associated with Lin 7), assemble as apical complexes

that play essential roles in regulating self-renewal and cell fate

(Margolis and Borg, 2005). The unequal distribution of apical

surface components during mitosis is a key determinant of

daughter cell fate in C. elegans and Drosophila (Fishell and

Kriegstein, 2003; Kemphues, 2000; Siller and Doe, 2009; Wo-

darz, 2005). Recently, mammalian Par3 was shown to promote

asymmetric cell division by specifying differential Notch

signaling in radial glial daughter cells (Bultje et al., 2009), sug-

gesting that the inheritance of the apical complex guides progen-

itor responses to proliferative signals as well.

Secreted signals can act at a distance to guide decisions gov-

erning progenitor proliferation and cell fate (Johansson et al.,

2010), but little is known of how secreted signals interact

with cell-autonomous ones. Insulin-like growth factor 1 (Igf1)

promotes progenitor proliferation (Hodge et al., 2004;

Popken et al., 2004). Insulin/Igf1 signaling is regulated by E-cat-

enin in keratinocytes (Vasioukhin et al., 2001) and b-catenin in

oligodendrocyte progenitors (Ye et al., 2010), suggesting that

cell polarity proteins govern cellular responses to extrinsic cues.

Direct interactions between Par3 and Pten (phosphatase and

tensin homolog) (Feng et al., 2008; Pinal et al., 2006; von Stein

et al., 2005; Wu et al., 2007) suggest that the apical complex

interacts with growth factor signaling pathways. Indeed, disrupt-

ing the apical complex via Pals1 leads to attenuated pS6

signaling, premature cell cycle exit, and rapid cell death, result-

ing in the absence of nearly the entire cerebral cortex (Kim et al.,

2010). In turn, Pals1-deficiency can be partially rescued by

concomitant activation of mTOR (mammalian target of rapamy-

cin) (Kim et al., 2010), a downstream effector of growth factor

signaling. Growth factor signaling, in particular via the type 1

Igf receptor (Igf1R), mediates powerful, age-dependent effects

on the development and maintenance of many organ systems
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including the brain through the regulation of progenitor cell divi-

sion (Baker et al., 1993; Hodge et al., 2004; Liu et al., 2009;

Popken et al., 2004; Randhawa and Cohen, 2005). Nevertheless,

the mechanisms coordinating the availability of Igf ligands to

cortical progenitor cells have remained unclear.

Though vascular sources of secreted proliferative signals are

well characterized (Palmer et al., 2000; Shen et al., 2004, 2008;

Tavazoie et al., 2008), the apical surfaces of early cortical precur-

sors and their primary cilia do not approximate blood vessels but

instead directly contact the cerebrospinal fluid (CSF) (Fuchs and

Schwark, 2004; Kim et al., 2010), suggesting that secreted

factors may interact with progenitor cells at this interface. The

CSF proteome shows a complex and dynamic pattern of protein

expression (Dziegielewska et al., 1981; Parada et al., 2005;

Zappaterra et al., 2007), suggesting important roles beyond

provision of a fluid cushion for the central nervous system and

maintenance of extracellular ionic balance. The CSF has recently

been implicated in carrying secreted proteins in several

contexts, including Fgf2 to midbrain progenitors (Martı́n et al.,

2006), Sonic hedgehog to cerebellar progenitors (Huang et al.,

2010) and Slit guidance of neuroblasts in adult brain (Sawamoto

et al., 2006). Regulation of cerebral cortical progenitor cells by

growth factors distributed in the lateral ventricular CSF would

provide potentially global control over cerebral cortical neuro-

genesis, but this hypothesis has not been examined.

Here, we show that the apical complex couples autonomous

regulation of progenitor proliferation to CSF-borne signals in

the developing cerebral cortex. Pals1 and Pten interact geneti-

cally to regulate cerebral cortical size and progenitor proliferation

and have opposing roles in localizing the Igf1R to the apical

domain of cortical progenitors. Apically localized Igf1Rs respond

to CSF-borne Igf ligands, particularly Igf2, and CSF regulates

cortical progenitor proliferation in an Igf2-dependent fashion.

Finally, CSF Igf2 concentration is elevated in patients with malig-

nant glioblastoma, suggesting that CSF proteins may regulate

CNS tumorigenesis. Our findings suggest that the apical

complex couples autonomous and extrinsic signaling in cerebral

cortical progenitors, enabling these cells to respond appropri-

ately to diffusible CSF-borne signals that regulate cortical neural

stem cells during development and disease.

RESULTS

Genetic Interactions of Pals1 and Pten

at the Apical Surface Region
Since Pals1 loss disrupts growth factor signaling and cortical

development (Kim et al., 2010), we looked for potential interac-

tions of Pals1 with other regulators of growth factor signaling

and found genetic interactions between Pals1 and Pten (Groszer

et al., 2001). Cerebral cortex-specific deletion of Pals1 was

achieved by crossing mice with a conditional Pals1 allele

(Pals1loxP/loxP) (Kim et al., 2010) with mice carrying Emx1-

promoter-driven Cre recombinase (Emx1Cre+/�) (Gorski et al.,

2002). Pals1loxP/loxP/Emx1Cre+/� mice lacked nearly the entire

cortical structure due to premature cell cycle exit and cell death

(Kim et al., 2010), with heterozygotes having an intermediate

phenotype (Figure 1A). In contrast, Pten deficiency, obtained

by crossing PtenloxP/loxP mice (Groszer et al., 2001) with either
894 Neuron 69, 893–905, March 10, 2011 ª2011 Elsevier Inc.
Emx1Cre+/� or NestinCre+/� mice, resulted in cortical hyper-

plasia arising from excessive and extended proliferation of apical

progenitors (Figure 1A; see Figures S1A–S1E available online;

Groszer et al., 2001). While the broadest groupings of cells

were preserved in Pten mutants, the cortical plate was disorga-

nized across its entire radial extent (Figures S1A–S1C). No

phenotypic abnormalities were observed in either heterozygous

PtenloxP/+/NestinCre+/� mice or in PtenloxP/loxP/NestinCre�/�

littermate controls (Figure S1A and data not shown). Conditional

deletion of Pten in the Pals1loxP/+/Emx1Cre+/� mice resulted in

an almost normal cortical size (Figure 1A). Histological analyses

of Pals1loxP/+/Emx1Cre+/� mice or PtenloxP/+/Pals1loxP/+/

Emx1Cre+/� mice revealed a severely disrupted laminar organi-

zation of the dorsomedial cortex (Figure 1B; Kim et al., 2010).

Double mutants showed a relatively normal organization of the

marginal zone (Figure 1B), consistent with a genetic interaction

between the apical complex and Pten. The expression of apical

complex components, especially Cdc42, were abnormal in Pten

cortex (Figure S1F and data not shown). The proportion of prolif-

erative progenitor cells marked by Ki67-positive staining cells

was greater in the doublemutant cortex compared to conditional

Pals1 heterozygotes (Figure 1C) and brain size was also

more normal by embryonic day (E) 14.5 (Figures S1G and S1H).

Proportions of early-born neurons marked by Tbr1 and

Ctip2 were also more normal in the PtenloxP/loxP/

Pals1loxP/+/Emx1Cre+/�mice than in either Pals1 or Ptenmutants

alone (Figure 1D and data not shown). However, cells in the

double mutant brain appeared irregular in size and lamination

(Figure 1D), a finding consistent with roles for Pten in the regula-

tion of cell size and polarity (Figure S1C; Chalhoub et al., 2009;

Groszer et al., 2001) and with a role for Pten downstream of

the apical complex.

The genetic interaction between Pals1 and Pten and the

decreased proliferation of progenitors and prominent cell death

in Pals1 mutants (Kim et al., 2010) prompted us to test whether

the apical complex interacts with Igf signaling, since Igfs play

a prominent role in cell cycle kinetics of cortical progenitors,

cell survival, and brain size (Hodge et al., 2004; Liu et al., 2009;

Popken et al., 2004; Schubert et al., 2003). The Igf1R, which

binds both Igf1 and Igf2, mediates the proliferative response to

Igf signaling (Weber et al., 1992). Surprisingly, Igf1R was en-

riched in cortical progenitors at the apical, ventricular surface,

interdigitating with b-catenin (Figures 2A–2D), suggesting the

apical region as the likely site for binding of Igf1R ligand. Apical

Igf1R expression was strikingly decreased in Pals1loxP/loxP/

Emx1Cre+/� mice (Figure 2E). By contrast in the absence of

Pten, Igf1R immunoreactivity demonstrated a considerable ba-

solateral spread in clusters of radial glia (Figure 2F and data

not shown). Analyses of downstream signaling events, using a

specific antibody against the phosphorylated form of Rsk

substrate S6 ribosomal protein (phospho-S6rp), revealed an

apical pattern of activity within control brains (Figure 2G). In

contrast in Pten mutants, phospho-S6rp showed a broad distri-

bution across the cortical tissue, with many robust phospho-

S6rp-positive cells extending basally away from the lateral

ventricle (Figure 2G). While the majority of cells positive for

Igf1R were clearly apical progenitors, some upregulation of

Igf1R in basal progenitors is possible. Though we cannot rule



Figure 1. The Apical Complex and Pten

Modulate Brain Size

(A) Conditional Pten deletion (PtenloxP/loxP/

Pals1+/+Emx1Cre+/�) resulted in hyperplasia and

an enlarged cerebral cortex. Ablation of Pten in

PtenloxP/loxP/Pals1loxP/+/Emx1Cre+/� mice largely

restored the small brain phenotype of PtenloxP/+/

Pals1loxP/+/Emx1Cre+/� neonates.

(B) H&E staining of PtenloxP/+/Pals1loxP/+/

Emx1Cre�/�, PtenloxP/+/Pals1loxP/+/Emx1Cre+/�,
and PtenloxP/loxP/Pals1loxP/+/Emx1Cre+/� neo-

nates. Arrowheads point to marginal zone.

(C) The proportion of Ki67-positive staining

progenitors was restored in the E14.5

PtenloxP/loxP/Pals1loxP/+/Emx1Cre+/� cortex

compared to PtenloxP/+/Pals1loxP/+/Emx1Cre+/�

(percent Ki67-positive staining cells ± SEM;

PtenloxP/+/Pals1loxP/+/Emx1Cre�/�, 65.6 ± 2.3;

PtenloxP/+/Pals1loxP/+/Emx1Cre+/�, 58.4 ± 2.0;

PtenloxP/loxP/Pals1loxP/+/Emx1Cre+/�, 75.8 ± 0.4;

ANOVA, p < 0.01, n = 3).

(D) Left panels: representative images of

Ctip2-positive and Tbr1-positive staining

neurons analyzed in PtenloxP/+/Pals1loxP/+/

Emx1Cre�/�, PtenloxP/+/Pals1loxP/+/Emx1Cre+/�,
and PtenloxP/loxP/Pals1loxP/+/Emx1Cre+/� neo-

nates. Right panels: the cortical plate was

subdivided into six equal bins and Ctip2 and

Tbr1 positive cells quantified per bin are ex-

pressed as percent of total cells per bin. Pten

deletion in thePtenloxP/loxP/Pals1loxP/+/Emx1Cre+/�

mice restored the proportions of early-born cells

marked by Tbr1 and Ctip2 (percent positive stain-

ing cells/total: PtenloxP/+/Pals1loxP/+/Emx1Cre�/�

Ctip2 = 8.13 ± 2.0, Tbr1 = 38.7 ± 2.4; PtenloxP/+/

Pals1loxP/+/Emx1Cre+/� Ctip2 = 1.6 ± 1.2, Tbr1 =

18.8 ± 3.1; PtenloxP/loxP/Pals1loxP/+/Emx1Cre+/�

Ctip2 = 8.5 ± 1.6, Tbr1 = 39.1 ± 2.6; ANOVA,

p < 0.05, n = 3).

See also Figure S1.
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out that Pals1 and Pten could function independently to regulate

Igf signaling and cortical growth, we interpret our data to suggest

that within the cortical ventricular zone, Pals1 and Pten spatially

restrict IgfR expression and Igf signaling to the apical membrane

domain.

Loss and gain of Igf signaling in mutant mice produced pheno-

types similar to those seen when apical complex signaling is

disrupted. Mice with Igf1R deficiency limited to neural precur-

sors (Igf1RloxP/loxP/NestinCre+/�) were microcephalic (Fig-

ure 2H–2J; Kappeler et al., 2008; Liu et al., 2009) and had

a reduced frequency of phospho-Histone H3 (PH3, a marker of

cell division) proliferative progenitors in the ventricular zone

(PH3-positive cells/100 mm VZ ± SEM at E16.5: control, 2.9 ±

0.3; Igf1RloxP/loxP/NestinCre+/�, 1.7 ± 0.1; unpaired t test, p <

0.01; n = 4 and n = 3, respectively). We did not observe differ-

ences in progenitor cell survival at the ventricular zone in these

mice as assessed by cleaved caspase 3 (CC3) immunoreactivity

(data not shown). Conversely, mice with increased Igf activity
(Igf1 expressed from the humanGFAP promoter) were macroce-

phalic (data not shown) (Ye et al., 2004) and had increased prolif-

erative progenitors at the ventricular surface (PH3-positive cells/

100 mm VZ ± SEM at E18.5: control, 0.9 ± 0.08; Igf1_Tg, 1.2 ±

0.07; unpaired t test, p < 0.05, n = 3 and n = 4, respectively).

Together with published work demonstrating that Insulin

receptor substrate 2 (Irs2) deletion leads to microcephaly

(Schubert et al., 2003), these data suggest that Igf signaling in

cortical progenitors, facilitated at the apical surface via Pals1

and an intact apical complex, regulates cortical development.

CSF-Borne Igf Signaling
The normal apical localization of the Igf1R, and the fact that we

did not observe Igf1 or Igf2 mRNA in neural progenitor cells by

in situ hybridization (Figures 3A, 3B, and data not shown; Ayer-le

Lievre et al., 1991), suggested that progenitor cells may be

exposed to Igfs derived from the lateral ventricle CSF. We

confirmed the presence of Igf2 in an unbiased tandem mass
Neuron 69, 893–905, March 10, 2011 ª2011 Elsevier Inc. 895



Figure 2. Igf1R Expression in Cortical Progenitor Cells

(A) Left panel: Igf1R in situ hybridization at E14.5 mouse. Right panel: high-magnification image of area denoted in left panel.

(B) Igf1R enriched along the ventricular surface of E17 rat cortex.

(C) Confocal images of Igf1Rb and b-catenin immunostaining in rat E17 ventricular zone.

(D) En face view of the mouse E16.5 ventricular zone immunostained with Igf1Rb and b-catenin.

(E) Ventricular Igf1R expression was disrupted in E12.5 Pals1loxP/loxP/Emx1Cre+/� cortex.

(F) Left panel: Igf1R expression was enriched along the apical, ventricular zone of E14.5 PtenloxP/+/NestinCre+/� controls. Right panel: Igf1R expression expanded

basolaterally in PtenloxP/loxP/NestinCre+/� radial glia.

(G) Left panel: pS6rp activity along the ventricular progenitors of E14.5 PtenloxP/+/NestinCre+/� controls. Right panel: pS6rp localization extended basolaterally

in PtenloxP/loxP/NestinCre+/� radial glia. See also Figure S1.

(H) Igf1R deficiency in NestinCre expressing cells diminished brain size at E16.5.

(I) Brain weights of Igf1RloxP/loxP/NestinCre+/� and controls at E16.5 (brain weight (g) ± SEM: Igf1RloxP/loxP/NestinCre+/�: 0.06; Igf1RloxP/loxP/NestinCre+/�:
0.03 ± 0.001; n = 2 [+/+], n = 3 [�/�]).

(J) H&E staining of brains shown in (H).
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spectrometry (LC-MS/MS) analysis of CSF (Table S1; Binoux

et al., 1986) and detected Igf1 in CSF by ELISA (E14 CSF

[Igf1], 72.2 ng/ml, n = 2; E17 CSF [Igf1], 69.6 ng/ml; adult

CSF [Igf1], 68.8 ng/ml, n = 3). Igf1 expression in the CSF re-

mained stable across the ages sampled (see above). In contrast,

expression of Igf2 in rat CSF was temporally dynamic; it peaked

during periods of neurogenesis and declined in adulthood (Fig-

ure 3C). High levels of Igf2 mRNA expression by the choroid

plexus suggested this as a source of CSF Igf2 (Figure 3B), and

quantitative PCR revealed that rat choroid plexus expressed

10.7-fold more Igf2 than its cortical counterpart at E17 (data

not shown). We confirmed that Igf2 mRNA was also expressed

in vascular endothelial cells, and leptomeninges in the rat

embryo at E14 and E17 as well as pericytes at E17 (Figures

3A, 3B, and data not shown; Bondy et al., 1992; Dugas et al.,

2008; Stylianopoulou et al., 1988), suggesting that extrachoroi-
896 Neuron 69, 893–905, March 10, 2011 ª2011 Elsevier Inc.
dal sources of Igf2 may contribute to CSF-Igf2 content as well.

Immunogold labeling revealed Igf2 binding to progenitors along

the apical, ventricular surface (Figure 3D). Moreover, Igf2 binding

to progenitors was highly enriched along primary cilia (Figure 3E),

which extend directly into the ventricular space (Figure 3F;

Cohen et al., 1988). We did not observe enriched Igf2 binding

beyond the apical surface of ventricular zone progenitor cells

(data not shown). Thus, the robust expression of Igf2 by the

choroid plexus and the apical binding of Igf2 to progenitors along

the ventricular zone strongly suggest that the CSF distributes

choroid plexus secreted Igf2 to cortical progenitor cells.

Purified rat E17 CSF directly stimulated Igf1R mediated

signaling activity, reflected by Igf1Rb phosphorylation as well

as phosphorylation of Akt and MAPK (Figure 3G), two down-

stream targets of Igf signaling as well as other growth factors

that may be present in CSF. Igf2 treatment by itself induced Igf



Figure 3. Igf2 Is Expressed in Cerebrospinal Fluid

and Stimulates Progenitor Proliferation

(A and B) Igf2 in situ hybridization of rat E14 and E17

cortex. Arrow points to choroid plexus.

(C) Transient Igf2 expression in rat CSF.

(D) Immunogold labeling of endogenous Igf2 in E17 rat

brain. Left panel: no primary control. Right panel: Igf2

binding to ventricular surface of cortical progenitors. Scale

bar represents 500 nm.

(E) Igf2 binding to primary cilium of cortical progenitor cell.

Arrow points to ciliary basal body. Scale bar represents

500 nm.

(F) Scanning EM of mouse ventricular surface at E12.5.

Arrowheads point to primary cilia projecting into the

ventricular space. Scale bar represents 2 mm.

(G) Lysates of cortical cells deprived of growth factors for

6 hr and treatedwith ACSF, E17CSF, or Igf2 for 5minwere

immunoblotted with antibodies to P-Igf1R, P-Akt, Akt,

P-ERK1/2, and ERK1/2.

(H) Schematic of cortical explant dissections: explant

placed on membrane with ventricular side down contact-

ing CSF and notch making medial-caudal side.

(I) Left panel: E16 explants cultured with NBM plus 20%

ACSF (control) or with supplemental Igf2 immunostained

with anti-Vimentin 4A4 and Hoechst represented as

mean ± SEM (Igf2 mean, 36.7 ± 2.1; control mean, 20.4 ±

4.46; n = 8; Mann-Whitney; p < 0.005). Vimentin 4A4-

positive cells increased in explants cultured with Igf2

compared to control. Right panels: representative images

of explants quantified in left panels.

(J) Single cells dissociated from primary neurospheres

cultured in control media or control media containing

Igf2 (20 ng/ml). Igf2 stimulated secondary sphere forma-

tion after 10 DIV (Igf2 mean, 39.3 ± 4.1; control mean,

2.2 ± 0.75; n = 3; t test; p < 0.005).

See also Table S1.
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signaling similar to embryonic CSF (Figure 3G). Igf2 binding to

progenitors, the localization of the Igf1R, its phosphorylation,

as well as the phosphorylation of its downstream targets Akt

and MAPK in response to CSF, strongly suggest that the CSF

is a primary source of Igf ligands for cerebral cortical neuroepi-

thelial cells, although additional sources cannot be completely

excluded.

We next tested whether Igf2 supports progenitor proliferation

in a cerebral cortical explant system. In this system, rat embry-

onic cortex dissected from the lateral pallium is placed on

polycarbonate membranes and floated on defined media (Fig-

ure 3H). We found that Igf2 added to neurobasal medium

(NBM) with 20% artificial CSF (ACSF) stimulated the prolifera-

tion of progenitor cells marked by phospho-Vimentin 4A4 in

rat cortical explants (Figure 3I; Noctor et al., 2002). In addition,

Igf2 treatment alone maintained GLAST-positive neurospheres,

an in vitro model of neural stem cells, even in the absence of

Fgf2 (fibroblast growth factor 2) and Egf (epidermal growth

factor) (Figure 3J; Vescovi et al., 1993). Finally, pharmacologic

activation of the signaling pathway with insulin demonstrated

that activation of Igf signaling by ligands other than Igf2 is

sufficient to stimulate proliferation (PH3-positive cells/100 mm

VZ ± SEM in E16 rat explant: control mean, 5.6 ± 0.7; insulin

(10 mg/ml) mean, 11.2 ± 0.4; Mann-Whitney, p < 0.05; n = 6).

Therefore, Igf signaling modulates proliferation of isolated
cortical precursors or those maintained in their pallial environ-

ment in vitro.

CSF Promotes Proliferation of Progenitor Cells
in an Age-Dependent Manner
Since the CSF is a complex fluid containing many factors

including Igf binding proteins that may modulate Igf2 bioavail-

ability and signaling (Figures 4A and 4B; Table S1; Clemmons,

1997; Zappaterra et al., 2007), we tested whether native CSF

alone could support cortical tissue growth. We used a hetero-

chronic ‘‘mix-and-match’’ approach for exposing cortical tissue

to CSF collected at different ages. E16 rat cortical explants with

intact meninges and vasculature cultured with 100% E17 rat

CSF for 24 hr, without any additional exogenous media or

factors, retained remarkable tissue architecture, cell viability,

and proliferation, approximating in vivo E17 rat cortex (Fig-

ure 4C). In contrast, E16 explants cultured with 100% artificial

CSF failed to thrive, had decreased mitotic activity, disorganized

neuronal morphology, and increased cell death (Figures 4C,

S2A, and S2B). Filtration analysis of E17 CSF showed that the

sizes of CSF factors that support stem cells likely range from

10 kDa–100 kDa, suggesting that they are proteins (Table S2

and data not shown). Thus, the embryonic CSF proteome

provides essential growth and survival factors for the developing

cortex.
Neuron 69, 893–905, March 10, 2011 ª2011 Elsevier Inc. 897



Figure 4. Embryonic CSF Supports Cortical

Explant Viability and Stimulates Prolifera-

tion of Neural Progenitor Cells

(A) TotalCSFprotein concentration over thecourse

of rat development.

(B) Silver stain of embryonic rat CSF revealed

a dynamic fluid with numerous changes in

protein composition over time. Asterisks indicate

proteins with varying CSF expression during

development.

(C) E17 rat cortex and E16 explants grown for

24 hr in 100% embryonic E17 CSF or 100%

artificial CSF, respectively. Upper panels: anti-

PH3 (red), and anti-Tuj1 (green), Hoechst (blue)

immunostaining. Lower panels: anti-BrdU (red)

and anti-Tuj1 (green) immunostaining. Explants

cultured in 100% E17 CSF in vitro maintained

tissue histology similar to embryo in vivo. Survival

and proliferation of explants cultured with E17

CSF indicated by immunoreactivity for PH3

along the ventricular surface, BrdU incorporation

in the ventricular zone, and Tuj1-positive-staining

neurons in the developing cortical plate.

(D) E16 explants cultured in 100% E13, E17, P6,

or adult CSF for 24 hr were immunostained with

anti-PH3 (see Figure S2C). Quantification of total

PH3-positive-staining cells per 400 mm explant

showed that proliferating cells increased in

explants cultured with E17 CSF compared to

E13, P6, or adult CSF. Immuno-positive cells

are represented as mean ± SEM (E17 mean,

44.1 ± 1.43; E13 mean, 25 ± 4.2; P6 mean, 9.2

± 0.8; adult mean, 9.6 ± 0.9, n = 4; Kruskal-

Wallis; p < 0.005).

(E) Quantification of ventricular PH3-staining cells

in explants (D). PH3-positive cells along the

ventricle were significantly increased in explants

cultured with E17 CSF compared to E13, P6, or

adult CSF (E17 mean, 32.3 ± 0.79; E13 mean,

12.8 ± 3.9; P6 mean, 4.9 ± 1.0; adult mean, 6.9 ±

0.73; n = 4; Kruskal-Wallis; p < 0.01).

(F) E16 explants (D) immunostained with anti-

Vimentin 4A4 (see Figure S2C) were quantified.

Vimentin 4A4-positive cells were significantly

increased in explants cultured with E17 CSF

compared to E13, P6, or adult CSF (E17 mean, 37.1 ± 1.4; E13 mean, 14.9 ± 1.9; P6 mean, 6.1 ± 1.05; adult mean, 7.3 ± 0.6; n = 4; Kruskal-Wallis; p < 0.005).

(G) Left panel: E16 explants cultured in control E17 CSF or E17 CSFwith Igf2 neutralizing antibody (Igf2 NAb), immunostained with anti-Vimentin 4A4 andHoechst

(E17 controlmean, 28.8 ± 4.3; E17 IGF2NAbmean, 13.9 ± 2.0; n = 4;Mann-Whitney; p < 0.05). Vimentin 4A4-positive cells decreased in explants culturedwith E17

CSF plus Igf2 NAb compared to control. Right panels: representative images of explants quantified in left panels.

(H) Primary neurospheres derived fromE14 cortexwere grown in 20%artificial (A), E14, E17, P6, or adult CSF for 10 days in vitro (DIV). E17CSF generated themost

spheres/cm2 (E17 mean, 274 ± 8.0; E14 mean, 77 ± 7.0; P6 mean, 110 ± 17.5; adult mean, 81 ± 8.8; n = 3; ANOVA; p < 0.005). See also Figure S2.

(I) Neurospheres derived from adult rat SVZ were cultured in artificial (A)CSF, Igf2 (20 ng/ml), E17 CSF, or adult rat CSF for 10DIV. Igf2, E17 CSF, and adult CSF

supported the growth andmaintenance of adult neurospheres (ACSF, 4.76 ± 0.67; Igf2, 17.3 ± 3.2; E17 CSF, 101.7 ± 15.8; adult CSF, 67.8 ± 12.6; Kruskal-Wallis,

Igf2 versus E17 CSF, p < 0.05; E17 CSF versus adult CSF, N.S.; n = 3).

See also Figure S2 and Tables S2 and S3.
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By comparing rat CSF from several ages, we determined that

the effects of CSF on survival and proliferation are strikingly age

dependent and mimicked the temporal profile of CSF-Igf2

expression (Figure 3C). E17 CSF (near the middle of neurogene-

sis) maintained the healthiest explants and produced the

maximal increase in the frequency of PH3-labeled proliferating

cells in E16 cortical explants compared to explants cultured

with E13 (early in neurogenesis), P6, or adult CSF (Figures 4D,

4E, S2C, and data not shown). Many mitotic cells were identified
898 Neuron 69, 893–905, March 10, 2011 ª2011 Elsevier Inc.
as proliferating neuroepithelial progenitor cells by their immuno-

reactivity for phospho-Vimentin (4A4; Figures 4F and S2C). In

contrast, no differences were seen in Tbr2-positive basal

progenitors, which do not contact the CSF directly (data not

shown). Together, these data suggest that age-dependent

differences in CSF signals are both supportive and instructive

for neuroepithelial precursor proliferation in the developing

cortex. The CSF effects may be specific to neuroepithelial

progenitors, which contact the ventricle through the apical
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complex, without affecting the intermediate progenitors of

the SVZ.

We tested directly whether CSF-borne Igf2 was necessary to

explain the effects of age-specific CSF on rat cortical explants.

The frequency of proliferating cells declined in explants grown

in E17 CSF in the presence of Igf2 neutralizing antibodies

(Igf2 Nab; Figure 4G). Igf2 neutralization with Igf2 NAb did not

interfere with Igf1 levels in CSF compared to control as assayed

by ELISA (data not shown). While Igf signaling is known to

promote neuronal survival (Popken et al., 2004), we did not

observe differences in ventricular progenitor cell survival in these

explant experiments (data not shown), suggesting that Igf

actions on neural cell survival likely depends on the cell type,

developmental stage, and microenvironment. These data

confirm the important role for CSF borne Igf2 in regulating cere-

bral cortical progenitor cells but do not rule out roles of other CSF

borne factors as well.

CSF Influence on Isolated Neural Stem Cells
Requires Igf Signaling
Neural stem cells cultured as neurospheres confirmed the age-

dependent capacity of CSF to maintain neural stem cells

(Reynolds and Weiss, 1996) and provided additional evidence

suggesting that Igf2-mediated signaling is an essential determi-

nant of CSF activity on neural stem cells. CSF from any age sup-

ported the proliferation and maintenance of isolated cortical

stem cells cultured as primary or secondary neurospheres (Fig-

ure 4H and data not shown; Vescovi et al., 1993). However, E17

CSFwasmaximally effective in generating increased numbers of

neurospheres, larger neurospheres, and maintained neuro-

spheres even in long-term cultures for up to 44 days in vitro

(Figures 4H, S2D–S2G, and data not shown). Neurospheres

grown in CSF retained responsiveness to Fgf2 and Egf, indi-

cating that the CSF maintains stem cells in an uncommitted

fate (Figure S2H). CSF generated neurospheres from adult

SVZ precursors as well (Figure 4I). Consistent with these obser-

vations and our explant studies, the Igf1R inhibitor picropodo-

phyllin blocked the formation of spheres in the presence of E17

CSF (data not shown). Our data suggest that the choroid plexus

is the most prominent source of Igf2 in CSF (Figures 3 and S3A).

Accordingly, media conditioned with E17 choroid plexus

provided enhanced support for neurosphere formation com-

pared tomedia conditionedwith embryonic cortex, adult choroid

plexus, or adult brain (Table S3), demonstrating that one or more

factors actively secreted from the embryonic choroid plexus,

including potentially Igf2, is sufficient for stem cell growth and

maintenance. Thus, distinct factors secreted by the choroid

plexus into the embryonic CSF, including Igf2, confer E17 CSF

with an age-associated advantage to stimulate and maintain

neural stem cell proliferation, and Igf signaling is likely one

pathway that promotes this process.

Genetic Inactivation of Igf Signaling Impairs
Brain Development
Mouse explant experiments confirmed a requirement for Igf

signaling in the proliferation of progenitor cells. Mouse embry-

onic CSF supported the survival and proliferation of mouse

cortical progenitors (C57BL/6 explants: 20% ACSF in NBM
mean, 7.4 ± 0.2; 20% E16.5 CSF in NBM mean, 14.1 ± 1.4;

Mann-Whitney; p < 0.01; n = 3), and purified Igf2 in 20% ACSF

in NBM stimulated cortical progenitor proliferation (Figure 5A).

When the Igf1R was genetically inactivated in cortical progeni-

tors (Igf1RloxP/loxP/NestinCre+/�) (Liu et al., 2009), wild-type

CSF no longer stimulated cortical progenitor proliferation

(ACSF, 17.6 ± 2.9; E16.5 CSF, 16.4 ± 3.0; Mann-Whitney; N.S.;

n = 3). Importantly, CSF obtained from Igf2�/� mice failed to

stimulate progenitor proliferation in wild-type explants

compared to control (Figure 5B), suggesting that Igf2 in its native

CSF environment stimulates proliferation of progenitor cells

during cerebral cortical development.

As expected for the roles we have shown for Igf2 in regulating

proliferation, we found that Igf2-deficiency reduced brain size

(Figure 5C). Igf2�/� brain weight decreased by 24% at P8

compared to controls (Figure 5D). Accordingly, the overall

cortical perimeter and surface area were reduced in Igf2�/�

brains compared to controls as well (Figures 5E–5G). Profound

defects in somatic size couple to brain size (Purves, 1988). As

previously reported (DeChiara et al., 1991; Baker et al., 1993),

Igf2�/� body weight was reduced compared to control (mean

body weight (g) at P8: Igf2+/+, 5.6 ± 0.01; Igf2�/�, 2.8 ± 0.1;

Mann-Whitney; p < 0.0001; n = 11), suggesting that Igf2 may

be a secreted factor that scales brain size to body size. Consis-

tent with the mouse CSF Igf2 expression pattern that is signifi-

cantly increased during later embryonic development (Fig-

ure S3B), blunting Igf2 expression markedly reduced the

proliferating progenitor cells at E16.5 compared to controls

(PH3-positive cells/100 mm VZ ± SEM at E16.5: Igf2+/+, 2.5 ±

0.3; Igf2�/�, 1.7 ± 0.1; Mann-Whitney; p < 0.05; n = 5). NeuN-

and late-born Cux1-staining neurons were reduced in Igf2�/�

mice (Figure 5H and data not shown), confirming that Igf2

contributes to cortical progenitor proliferation and to late stages

of neurogenesis. Taken together, our genetic experiments

support a model in which the apical complex localizes Igf

signaling in progenitors by ensuring the apical, ventricular local-

ization of the Igf1R. In this manner, the apical complex couples

cell autonomous and extracellular signals to the regulation of

cortical development.

Glioblastoma CSF Expresses High Igf2
Our data, together with recent findings implicating Igf signaling in

the maintenance of adult neural stem cells (Llorens-Martı́n et al.,

2010), raised the possibility that abnormalities of the CSFmay be

relevant to conditions showing abnormal proliferation, including

in glioblastoma multiforme (GBM), a malignant astrocytic brain

tumor. Igf-PI3K-Akt signaling has been implicated as a key regu-

lator of gliomagenesis (Louis, 2006; Soroceanu et al., 2007), and

mutations in PTEN are commonly found in patients with GBM

(Louis, 2006). We analyzed Igf2 concentration in a panel of 56

human GBM patient CSF samples collected from 21 individuals

representing the full range of disease progression and 8 disease-

free controls and found that CSF from GBM patients contained

significantly more Igf2 than CSF from disease-free controls

(Igf2 concentration expressed asmean ± SEM for GBM patients,

340.4 ± 12.9 ng/ml; n = 56; disease-free controls, 222.9 ±

41.5 ng/ml; n = 8; Mann-Whitney, p < 0.01). Three GBM samples

containing the highest Igf2 concentrations (605.8 ng/ml,
Neuron 69, 893–905, March 10, 2011 ª2011 Elsevier Inc. 899



Figure 5. CSF Igf2 Regulates Progenitor

Proliferation and Brain Size

(A) Left panels: E15.5 C57BL/6 explants cultured

in NBM supplemented with 20% ACSF or

ACSF/Igf2. Igf2 stimulated the proliferation of

PH3-positive cortical progenitor cells (C57BL/6

explants: ACSF mean, 7.4 ± 0.2; Igf2 mean, 11.2

± 0.3; Mann-Whitney, p < 0.05; n = 3). Right

panels: representative images of explants quanti-

fied in left panels.

(B) E15.5 C57BL/6 explants cultured in NBM sup-

plemented with 20% E16.5 wild-type or Igf2�/�

CSF. Igf2-deficient CSF failed to stimulate progen-

itor cell proliferation compared to control

(Igf2+/+,17.9 ± 0.8; Igf2�/� CSF, 11.4 ± 1.0;

Mann-Whitney; p < 0.06; n = 3 and n = 4, respec-

tively).

(C) Representative images of P8 Igf2�/� and

control brains.

(D) Igf2deficiency reducedP8brainweight (Igf2+/+,

0.34 g ± 0.008; Igf2�/�, 0.26 g ± 0.004;Mann-Whit-

ney, p < 0.0001, n = 11).

(E) Igf2 deficiency reduced P8 cortical perimeter

(Igf2+/+, 30.9 mm ± 0.01; Igf2�/�, 26.4 mm ± 0.1;

Mann-Whitney, p < 0.0001, n = 11).

(F) Igf2 deficiency reduced P8 cortical surface area

(Igf2+/+, 13.0mm2 ± 0.1; Igf2�/�, 9.4 mm2 ± 0.1;

Mann-Whitney, p < 0.0001, n = 11).

(G)H&E staining of Igf2�/� and control brains at P8.

(H) Left panels: Igf2�/� brains have reduced

numbers of upper layer neurons marked by Cux1

(total Cux1-positive staining cells in equally sized

cortical columns expressed as mean ± SEM:

Igf2+/+, 157 ± 1.5; Igf2�/�, 131.3 ± 3.3; t test,

p < 0.005, n = 3). Right panels: representative

images of Igf2�/� and control brains quantified in

left panels.

See also Figure S3.
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502.8 ng/ml, and 468.7ng/ml) came from patients with advanced

disease (Figure 6A and Table 1). By contrast, the three patients

with the lowest levels of Igf2 (142.1 ng/ml, 145.4 ng/ml, and

153.9 ng/ml) all had early or stable glioma (Figure 6A andTable 1).

Similar to rodent ventricular CSF, human lumbar CSF stimulated

cortical progenitor cell proliferation in our explant assay, with

CSF from GBM patients causing greater proliferation than CSF

from disease-free controls (Figure 6B). Moreover, human GBM

patient CSF neutralized with Igf2 antibodies failed to stimulate

the proliferation of progenitor cells (Figure 6B; Igf2 concentration

following NAb absorption, GBM1(PBS): 605.8 ng/ml; GBM1

(NAb), 45.6 ng/ml; GBM2(PBS), 502.8 ng/ml; GBM2(NAb),

218.3 ng/ml; GBM3(PBS), 468.7 ng/ml; GBM3(NAb),

248.8 ng/ml). Taken together, these data suggest that beyond

embryonic brain development, CSF-Igf2, in particular, is a poten-

tial mediator of GBM pathology and that the CSF mechanisms

that normally regulate neural stem cells are misregulated

in GBM.

CSF-Mediated Long-Range Distribution
of Additional Secreted Factors
Whereas our studies suggest an important role for Igf2 in control-

ling proliferation in late stages of neurogenesis and potentially
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postnatally, they do not rule out the presence of other secreted

factors that may act at long ranges via the CSF, and so we per-

formed functional screening tests for several other families of

factors. The CSF contained Wnt signaling activity (Zhou et al.,

2006), based upon phosphorylation of LRP6, a Wnt coreceptor

in response to CSF exposure (Figure 7A). Several Wnt ligands

were expressed along the ventricular surface and in the choroid

plexus (Figure 7B and data not shown; Grove et al., 1998). Friz-

zled (Fz) receptors, which bind LRP6 to transduce Wnt signals,

showed enhanced expression in ventricular progenitors (Fig-

ure 7B and data not shown; Zhou et al., 2006), suggesting that

CSF may distribute Wnts to precursors throughout the ventric-

ular surface. Additional signaling activities that influence cortical

development were also found in the CSF, with responsive cells

seen broadly in the ventricular zone. There were dynamic levels

of bone morphogenetic protein (Bmp) activity in the CSF during

different stages of cortical development (Figure 7C). Using

a luciferase-based assay in which overall Bmp activity can be

quantified between 0.1 and 100 ng/ml (data not shown), we

found that Bmp activity in the CSF decreased during embryo-

genesis and peaked in adulthood (Figure 7C). CSF-borne Bmp

activity may be responsible for stimulating progenitors widely

throughout the cortical ventricular zone in vivo, based on



Figure 6. Glioblastoma CSF Igf2 Supports Progenitor Proliferation

(A) MRI scans from subjects with low and high CSF Igf2 levels. Gadolinium-

enhanced T1-weighted (T1-Gad) MRI sequence delineated the contrast-

enhanced portion of the tumor where tumor angiogenesis developed. Fluid

attenuation inversion recovery (FLAIR) images included area of nonvascular-

ized and invasive tumor (Macdonald et al., 1990).

(B) Twenty percent humanGBMCSF in NBM stimulated PH3-positive proliferating

cells compared to an average of three disease-free control CSFs in E16 rat

explants (control = 16.0 ± 4.1 [n = 3]; GBM1 = 32.3 ± 4.3 [n = 4]; GBM2 = 23.0 ±

2.8 [n = 5]; GBM3 = 23.4 ± 3.8 [n = 4]; Mann-Whitney, p < 0.05). Igf2(NAb) inhibited

GBMCSF-stimulated progenitor proliferation (GBM1 = 13.5 ± 2.9 [n = 4]; GBM2 =

9.0 ± 2.7 [n = 4]; GBM3 = 13.0 ± 1.5 [n = 3]; Mann-Whitney, p < 0.05). CSF Igf2

concentration before and after Igf2 NAb absorption: GBM1(PBS) = 605.8 ng/ml;

GBM1(NAb) = 45.6 ng/ml; GBM2(PBS) = 502.8 ng/ml; GBM2(NAb) = 218.3 ng/ml;

BM3(PBS) = 468.7 ng/ml; GBM3(NAb) = 248.8 ng/ml).

Neuron

The CSF Instructs Cortical Progenitor Proliferation
widespread labeling for nuclear phospho-SMAD1/5/8 (Figure 7D)

in the absence of any known Bmp ligands localizing to the

ventricular zone (Shimogori et al., 2004), whereas Bmps 2, 4, 5,

and 7 are expressed in embryonic and adult choroid plexus (Fig-

ure 7E; Hébert et al., 2002; Shimogori et al., 2004). Moreover,

growth and differentiation factors 3 and 8 (GDF3 and GDF8),

both members of the TGF-b superfamily of proteins that can

influence Bmp signaling (Levine and Brivanlou, 2006) were found

in our MS analyses of CSF (data not shown), though we do not

consider our MS analysis to have recovered all potential smaller

ligands in the CSF. Retinoic acid (RA) (Haskell and LaMantia,

2005; Siegenthaler et al., 2009) activity in CSF also varied over

the course of cortical development (Figure 7F). A luciferase-

based assay that quantifies RA activity ranging between 10�9

and 10�6M (data not shown) revealed that RA activity in CSF

peaked early and decreased in adulthood (Figure 7F). In parallel,

RA responsive cortical progenitors localized to the developing

ventricular zone (Figure 7G). Similar to Wnts and Bmps, RA is

most likely released into CSF since RA synthetic and catabolic

enzymes were expressed in the choroid plexus (Figure 7H) and

meninges (data not shown). Thus, CSF shows bioavailability of

a wide range of activities known to regulate neurogenesis,

patterning, and neuronal survival in the cerebral cortex and

throughout the CNS.

DISCUSSION

We show that the CSF plays an essential, active role in distrib-

uting signals in the central nervous system. The key findings of

our study are (1) the apical complex is essential for the apical

localization of Igf1R; (2) Pten deficiency in the Pals1 background

results in an almost normally sized brain; (3) CSF Igf2 binds to the

apical domain of cortical progenitor cells, stimulating their prolif-

eration in an age-dependent manner; (4) Igf2 is upregulated in

GBM patient CSF, contributing to the range of proliferative activ-

ities of GBM patient CSF; and (5) the CSF provides an adaptive

library of secreted factors throughout life. Thedynamic regulation

of several potent modulators of neural stem cells reinforces the

central relationship between local signaling at the apical surface

via ligands delivered by the CSF during cortical neurogenesis.

Asymmetric Growth Factor-Based Signaling
It has been suggested that asymmetry of signaling at the apical

versus basolateral aspect of cortical progenitors regulates

progenitor progress through the cell cycle (Bultje et al., 2009;

Sun et al., 2005). The basolateral expansion of the Igf1R

signaling domain we report in Pten mutants suggests

potential links between asymmetric growth factor signaling and

proliferation. Although asymmetric localization of the EgfR in

cortical progenitors has previously been reported (Sun et al.,

2005), the ventricular enrichment of the Igf1R was not known

and raises the possibility that the apical enrichment of the

Igf1R along with other apical proteins confers a differential

responsiveness to mitogenic signals, akin to Notch signaling

(Bultje et al., 2009). Since Igfs are potent mitogens for cortical

progenitors (Hodge et al., 2004; Popken et al., 2004), one model

might suggest that inheritance of the apical complex promotes

progenitor fate by differentially concentrating Igf1R and its
Neuron 69, 893–905, March 10, 2011 ª2011 Elsevier Inc. 901



Table 1. Clinical Presentation of GBM Patients with Lowest and Highest CSF Igf2 Concentrations

Patient [Igf2] ng/ml

Clinical Presentation

Tumor size:

T1-Gad (cm2)

Tumor size:

FLAIR (cm2) Life Span

Low CSF Igf2 L1 142.1 7.14 6.46 Stable disease at follow-up; 3 weeks post-CSF collection

L2 145.4 8.50 54.12 Stable disease at follow-up; 3 weeks post-CSF collection

L3 153.9 5.94 20.5 Stable disease at follow-up; 5 weeks post-CSF collection

High CSF Igf2 H1 605.8 47.31 102.83 Deceased at 1 week post-CSF collection

H2 502.8 13.69 53.90 Deceased at 52 weeks post-CSF collection

H3 468.7 23.94 36.48 Deceased at 30 weeks post-CSF collection

Patientswith the lowest CSF Igf2 concentrations (L1–L3) had early or stable GBMdisease state, while patients with the highest CSF Igf2 concentrations

(H1–H3) had advanceddisease and aggressive tumor progression at time ofCSF collection. Tumor sizewas determined byMacdonald’s criteria, where

T1-Gad MRI sequence delineated the contrast-enhanced portion of tumor, and FLAIR images include areas of nonvascularized and invasive tumor

(Macdonald et al., 1990). High-CSF Igf2 patients had larger T1-Gad tumor sizes compared to low-CSF Igf2 patients (Mann-Whitney; p < 0.05; n=3).
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downstream signaling proteins into cells that retain their peri-

karya or at least a process (likely a cilium) in the ventricular

zone, causing these cells to remain in the cycling pool. The pres-

ence of proliferation-inducing factors in the CSF suggests that

withdrawal of the progenitor’s apical ventricular process may

be an important step in neuronal differentiation (Cappello et al.,

2006), by insulating progenitor cells from proliferative signals in

CSF, with vascular niches potentially supplying sources of

secreted factors for stem cells at other stages (Palmer et al.,

2000; Shen et al., 2004, 2008; Tavazoie et al., 2008).

Our data provides a new perspective on the production and

provision of Igf ligands, which are known to regulate stem cell

populations in the brain and other proliferative epithelia

(Bendall et al., 2007; Hodge et al., 2004; Liu et al., 2009; Popken

et al., 2004; Ye et al., 2004; Zhang and Lodish, 2004). In the E17

rat brain, the choroid plexus was the strongest source of Igf2,

though we cannot discount a contribution by the vasculature or

other cellular sources of Igf2 that may percolate into the CSF.

Indeed, both pericytes and endothelial cells express Igf2 (Dugas

et al., 2008), and Igfs from vascular tissue may have local effects

beyond apically mediated Igf1R signaling shown here. Thus,

locally derived Igf2 may play distinct roles at different develop-

mental time points and in different cellular contexts, and Igf

signalingmayalsobe influencedbyCSF Igf1and insulin.Although

Igf2 availability decreased in adult CSF (Figures 3C andS3B), Igf2

continued to be expressed in adult choroid plexus (data not

shown) and maintained adult neurospheres (Figure 4I), suggest-

ing that low levels of CSF Igf2 contribute to the maintenance of

adult neural stem cells. The aberrant increase in Igf2 in advanced

GBM patients reinforces the hypothesis that Igf signaling has an

influence on proliferation of cortical precursors. Our identification

of Igf2 regulation of neurogenesis and brain size complements

a literature in which Igf signaling is well known to influence body

and brain size (Baker et al., 1993; DeChiara et al., 1991; Purves,

1988), raising the intriguing possibility that Igf2 represents

a secreted factor that may scale brain size to body size.

Fluid-Based Signaling in the CNS and Beyond
The activity of growth promoting factors in the CSF and their

action on progenitors across the apical surface may be a model

for other epithelia including lung, gut, and vascular endothelia
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that develop in relation to extracellular fluids (Bendall et al.,

2007; Scadden, 2006). Extracellular fluid apparently regulates

the microenvironment of hematopoietic stem cells, where Igf

signaling regulates progenitor proliferation (Orkin and

Zon, 2008; Zhang and Lodish, 2004). The differential capacity

of Igf signaling to confer a proliferative advantage to stem cells

may be regulated in part by Igf’s interactions with binding

proteins or other secreted factors in the environment (Clem-

mons, 1997). Our experiments focused on the age-associated

effects of CSF on survival and proliferation across the cortical

ventricular zone. However, the distribution of CSF resident

proteins, as well as the flow of the CSF, may also influence ciliary

orientation andmaturing ependymal cell polarity (Mirzadeh et al.,

2010), which create activity gradients as has been shown for Slit

(Sawamoto et al., 2006).

If a major component of the stem cell niche reflects secreted

factors acting at long distances from their sources, modulation

of the proteomic composition of extracellular fluids may also

provide unexpected ways to regulate stem cell behavior in

health and disease. For example, while Igf2 activity peaked

in embryonic CSF, some CSF-borne Igf persisted in adulthood

(Figures 3, S3B, and data not shown). Igf2 and Igf1 in adult CSF

may contribute to the retention of neural stem cell properties in

the adult SVZ (Doetsch et al., 1999). Importantly, the regulation

of CSF growth factors may also extend to pathologic states.

Igf2 and other diffusible growth factors that drive neural progen-

itor proliferation during development are upregulated in some

GBM patients (Louis, 2006; Soroceanu et al., 2007), and GBM

patients have elevated Igf2 levels in their CSF. CSF Ab1–42 and

phosphorylated Tau levels were recently shown to assist in

Alzheimer’s disease diagnosis (De Meyer et al., 2010). Thus,

modulation of the proteomic composition of extracellular fluids

together with the integration of cell autonomous determinants of

self-renewal by the apical complex may ultimately provide unex-

pected ways to regulate stem cell behavior in health and disease.

EXPERIMENTAL PROCEDURES

Animals

Time pregnant Sprague-Dawley, C57BL/6, and Swiss Webster dams were

purchased from Charles River Laboratories and Taconic. Pals1loxP/loxP/

NestinCre+/�, Pals1loxP/loxP/Emx1Cre+/�, Igf1RloxP/loxP/NestinCre+/�, and



Figure 7. The CSF Proteome Coordinates

Multiple Signaling Pathways that Regulate

Brain Development

(A) Lysates of cortical cells were left untreated or

treated with 20% ACSF or E17 CSF and 10%

Wnt3a conditioned medium or its control medium

for 2 hr and subjected to immunoblotting with the

P-LRP6 or LRP6 antibodies.

(B) In situ hybridization forWnt5a and Fz1 inmouse

E14.5 cortex.

(C) Bmp activity was measured in E14, E17, and

adult rat CSF as luciferase signal in a clonally

derived Bmp-sensitive cell line. Responses were

compared to linear responses generated in the

same cell line by pure ligand (Bmp4; data not

shown). Bmp activity levels varied with age and

were statistically significant between E17 and

adult (ANOVA, p < 0.001; n = 4).

(D) Toppanel: expressionandnuclear localizationof

phospho-Smad (P-SMAD) 1/5/8 in E14 rat cortical

ventricular cells. Bottom panel: arrow points to

expression and nuclear localization of P-SMAD1/

5/8 in E16.5 mouse cortical ventricular cells.

(E) qPCRmeasurement ofBmps2, 4, 5, and7 in the

E16, E18, P0, and adult rat choroid plexus (CP).

(F) Quantification of RA activity in E14, E17, and

adult rat CSF. RA activity declined, based on

comparison of CSF activation of anRA responsive,

clonally derived cell line with response to RA at

known concentrations, frommidgestation through

adulthood (ANOVA, p = 0.07; n = 4).

(G) RA responsive progenitor cells at the cortical

ventricular zone from an E16.5 DR5-RARE trans-

genic mouse (LaMantia et al., 1993).

(H) qPCR of Raldh1, 2, 3, and Rdh10, in rat CP.
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GFAP:Igf_1Tg mice were obtained from heterozygous breedings, and

PtenloxP/+/Pals1loxP/+/Emx1Cre+/�, and PtenloxP/loxP/Pals1loxP/+/Emx1Cre+/�

mice were obtained from PtenloxP/+/Pals1loxP/loxP/Emx1Cre+/� and

PtenloxP/loxP/Emx1Cre�/� crosses (Groszer et al., 2001; Kim et al., 2010; Liu

et al., 2009; Ye et al., 2004). Igf2�/� and control CSF was collected from

embryos obtained from homozygous breedings. Igf2�/� and control P8 brains

were obtained from homozygous crosses or paternal heterozygotes mated

with homozygous knockouts (DeChiara et al., 1991). All animal experimenta-

tion was carried out under protocols approved by the IACUCs of Harvard

Medical School, Children’s Hospital Boston, and UNC-Chapel Hill.

Antibodies

The following antibodies were purchased: Ctip2, Igf2 (for EM), Tbr2 (Abcam);

BrdU (AbD Serotec); Ki67 (Abnova); Vimentin 4A4 (Assay Designs); Pax6

(Developmental Studies Hybridoma Bank); b-catenin, Cdc42 (BD Biosci-

ences); AKT, phospho-AKT, Igf1R, phospho-Igf1R, CC3, and phospho-S6rp

(Cell Signaling); GLAST (Chemicon); Tuj1 (Covance); HRP conjugated anti-

Transferrin (Immunology Consultants Laboratory, Inc.); Igf2 (NAb; Millipore);

Cux1, Igf2 (for WB) (Santa Cruz Biotechnology); and phospho-Histone H3

(Upstate). Tbr1 was a kind gift of R. Hevner.

CSF Isolation

Embryonic rodent CSF, isolated as described (Zappaterra et al., 2007), was

kept on ice during collection, centrifuged at 10,000 3 g at 4�C for 10 min.,

and stored at �80�C. Human GBM and disease-free CSF samples were

collected by lumbar puncture from patients undergoing clinical evaluation.

The 56 GBM samples tested were obtained from 21 individuals representing

the full-range of disease progression. The samples used in analyses of highest

and lowest CSF Igf2 concentration were obtained from distinct individuals. All

research was approved by the IRBs at BIDMC and Children’s Hospital Boston.
Cortical Explants

The telencephalic wall was dissected onto polycarbonate membranes

(Whatman; 13 mm, 8.0 mm) and cultured for 24 hr as described in text. Artificial

(A)CSF (NaCl 119 mM, KCl 2.5 mM, NaHCO3 26 mM, NaH2PO4 1 mM,

glucose 11 mM, MgCl2 2 mM, CaCl2 2.8 mM) was supplemented with Igf2

(2 ng/ml; US Biologicals) as indicated. Igf2 NAb antibody was incubated

with E17 CSF for 1 hr at 4�C. Explants were pulsed with BrdU for 30 min

and fixed (60% methanol, 30% chloroform, and 10% acetic acid; 10 min).

For in vivo BrdU labeling, pregnant dams were administered a 3 hr BrdU

(60 mg/kg) pulse. Tissue was paraffin sectioned (5 mm).
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