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SUMMARY could represent an important cause of complex neu-
Hemimegalencephaly (HMG) is a developmental
brain disorder characterized by an enlarged, mal-
formed cerebral hemisphere, typically causing
epilepsy that requires surgical resection. We studied
resected HMG tissue to test whether the condition
might reflect somatic mutations affecting genes crit-
ical to brain development. We found that two out of
eight HMG samples showed trisomy of chromosome
1q, which encompasses many genes, including
AKT3, a gene known to regulate brain size. A third
case showed a known activating mutation in AKT3
(c.49G/A, creating p.E17K) that was not present in
the patient’s blood cells. Remarkably, the E17K
mutation in AKT3 is exactly paralogous to E17K
mutations in AKT1 and AKT2 recently discovered in
somatic overgrowth syndromes. We show that
AKT3 is the most abundant AKT paralog in the brain
during neurogenesis and that phosphorylated AKT is
abundant in cortical progenitor cells. Our data
suggest that somatic mutations limited to the brain
rogenetic disease.

INTRODUCTION

The role of somatic mutation in human brain development and

disease is a source of intense interest to developmental neuro-

scientists and human geneticists. Somatic mutation, such as

by the mobilization of retrotransposons during neurogenesis

(Muotri and Gage, 2006; Singer et al., 2010) or by copy number

variation in neurons (Rehen et al., 2005), has been proposed as

a source of normal neuronal diversity. However, neurogenetic

disease has also been attributed to somatic, postzygotic muta-

tions in TSC2, NF1, and DCX that are detectable in some, but

not all, blood cells and appear to be present in some, but not

all, brain cells (Gleeson et al., 2000; Messiaen et al., 2011; Qin

et al., 2010; Vogt et al., 2011). On the other hand, it has been

essentially impossible to study potential roles of mutations that

are limited to brain cells, because such mutations are by defini-

tion absent from blood and other tissues typically available for

genetic study. Such somatic mutations could conceivably play

important roles in complex neurogenetic disorders, such as

epilepsy, intellectual disability, and psychiatric disease, for
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Figure 1. MRIs of Patients with Hemimegalencephaly Due to Somatic Mutations

(A and B) The first column shows an example of coronal T2-weighted and axial T2-weighted MRI images showing the brain of a normal 1 year old. Note the

symmetric size of the right and left hemispheres, labeled R and L to denote standard MRI convention. (C–J) Representative images from the brain MRIs of two

patients with HMG before and after surgical removal of the abnormal hemisphere are shown. (C and D) HMG-1 has somatic trisomy of chromosome 1q. MRI

before surgery showed left-sided hemispheric enlargement, abnormal cortical thickness and configuration, and enlarged left lateral ventricle in the coronal

T2-weighted and axial T2-weighted images. The right hemisphere is smaller and appears normal. (E and F) After left hemispherectomy surgery, there is cere-

brospinal fluid (CSF) where the abnormal hemisphere had been, seen as bright signal in coronal and axial images taken at approximately the same plane as the

preoperative images. (G and H) HMG-3 has a somatic mosaic mutation in AKT3. Coronal T2-weighted and axial T2-weighted MRI images show right-sided

hemispheric enlargement, abnormal cortical thickness and signal, abnormal white matter signal, and an enlarged lateral ventricle. (I and J) After right hemi-

spherectomy surgery, as in the previous case, CSF is visible as bright signal in place of the resected abnormal hemisphere.
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which prominent roles for de novo mutations have been well

documented (Awadalla et al., 2010; Poduri and Lowenstein,

2011; Ropers, 2008). Here we describe a highly epileptic

disorder, hemimegalencephaly (HMG, literally, enlargement of

one brain hemisphere), as a model to characterize the role of

somatic mutation in the developing brain.

HMG is a developmental brain disorder characterized by an

enlarged, malformed cerebral hemisphere (Flores-Sarnat et al.,

2003). The clinical presentation typically includes intellectual

disability and severe, intractable epilepsy, often necessitating

surgical removal or disconnection of the abnormal hemisphere

for seizure control (Gowda et al., 2010). Although no specific

genetic causes have been identified for isolated HMG, HMG

has been reported in association with Proteus syndrome (Grif-

fiths et al., 1994)—another multisystem overgrowth disorder

that has recently been associated with somatic activating muta-

tions in the gene AKT1 (Lindhurst et al., 2011)—as well as other

rare neurocutaneous syndromes (Mochida et al., 2013). There

are also rare reports of HMG associated with tuberous sclerosis

complex (TSC) (Cartwright et al., 2005), a syndrome in which

multiple organ systems display disordered and sometimes

cancerous growths.

The striking asymmetry of the brain in individuals with HMG

has long suggested that HMG reflects spontaneous, somatic,

clonal mutation limited to the brain, analogous to cancer but

without cellular transformation and ongoing proliferation. We

hypothesized that the somatic mutations causing HMG might

be essentially restricted to the brain and detectable by direct

study of affected brain tissue. Here we show that three out of
42 Neuron 74, 41–48, April 12, 2012 ª2012 Elsevier Inc.
eight HMG samples studied showed somatic mutations

involving AKT3: two with large duplications of chromosome 1q

encompassing AKT3, as well as many other genes, and a third

carrying a known activating mutation in AKT3. Moreover, we

demonstrate that at least two out of three of these mutations

are not detectable in blood of the same individuals, reflecting

somatic mutations affecting the brain preferentially or

exclusively.

RESULTS AND DISCUSSION

We studied eight samples of brain tissue resected at the time of

epilepsy surgery and identified two that showed trisomy of chro-

mosome 1q. The first partial trisomy case (HMG-1) was a non-

dysmorphic boy requiring hemispherectomy at 15 months of

age for treatment of epilepsy due to HMG. He had no clinical

evidence of nonnervous system involvement. Magnetic reso-

nance imaging (MRI) showed left-sided HMG, with the extent

of the lesion reflected in the large amount of brain removed in

order to control his seizures (Figures 1C and 1D show the left

HMG before surgery, and Figures 1E and 1F show only the

normal right hemisphere remaining after surgery). After surgery,

seizures were dramatically reduced from approximately ten per

day to one to four per month. At age 6, he had right-sided weak-

ness but could walk independently; he had good language

comprehension, though his speech production was limited to

a few words, and he attended school with special services.

Neuropathological analysis from the affected hemisphere re-

vealed diffuse abnormalities of cortical development (cortical



Figure 2. Abnormal Cortical Development in Hemimegalencephaly

Case HMG-1 with Trisomy of Chromosome 1q

(A) Low-power view (203 magnification) of a gyrus from the cerebral cortex

stained with hematoxylin and eosin (H&E) shows an abnormally contoured

surface and variably thick cortical ribbon and molecular layer. (B) Analysis of

subcortical white matter using cresyl violet and luxol fast blue highlights

numerous subcortical bands and islands of ectopic gray matter that contain

neurons and glia (asterisks). (C) Immunohistochemical staining for phosphor-

ylated neurofilament SMI31 highlights scattered abnormal large neurons. (D)

Rare small collections of neuroblast-like cells (microdysplasia) were present

on H&E. (E) Immunohistochemical staining also demonstrated an abnormal

number of proliferating Ki67-positive cells scattered throughout gray andwhite

matter that had an atypical nuclear morphology. (A) has a view of 203

magnification, (B) has a view of 2003magnification, and (C)–(E) have a view of

6003 magnification.
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dysplasia) with irregular cortical architecture, ectopic bands of

gray matter in the subcortical white matter, scattered prolifer-

ating cells, and abnormal neurons consistent with previous

reports of HMG (Figure 2) (Flores-Sarnat et al., 2003). Copy

number evaluation of single nucleotide polymorphism (SNP)

data showed increased signal for the entire q arm of chromo-

some 1 in the brain sample (Figures 3A and 3B and Figure S1

available online), with an estimated copy number of 2.41 (SD

0.12). No other chromosomes displayed abnormal copy number

(Figure 3A). Quantitative PCR (qPCR) confirmed the 1q trisomy,

generating a calculated copy number of 2.39 (SD 0.30) from one

brain sample; from a second sample, the calculated copy

number was 2.68 (SD 0.16), 2.76 (SD 0.20), and 2.73 (SD 0.13)

at 1q21.3, 1q31.1, and 1q42.2, respectively (Figure 3C). The

intermediate copy number, between 2 and 3, suggests a mixture

of normal and trisomic cells in the brain regions sampled, and

together these results suggest that the ratio of normal and

abnormal cells varied somewhat in different parts of the re-

sected tissue. High-resolution karyotype and qPCR of periph-

eral blood cells in the patient did not reveal any evidence of

trisomy 1q in these nonbrain cells (Figure 3C and data not

shown).

We identified a second case of partial gain of chromosome 1,

again involving the entire 1q arm, based on SNP data from the
brain sample of an individual (HMG-2) reported to have isolated

HMG on MRI, similar but somewhat milder neuropathological

findings of mild dysplasia (manifest primarily as a thickened

cortical ribbon), and no other medical problems (Figure S1).

Copy number at 1q assessed by qPCRwas 2.75 (SD 0.28), again

consistent with mosaic partial trisomy. Leukocytes or other

tissues were not available from this individual, so the somatic

nature of the mutation could not be directly tested. Inspection

of the published literature and the Database of Genomic Variants

(http://projects.tcag.ca/variation), a large database of copy

number variation, suggests that there are no known control indi-

viduals with large constitutional duplications of 1q (Iafrate et al.,

2004). Wintle et al. (2011) recently conducted a sensitive copy

number analysis on brain tissue from 52 individuals without

HMG and reported no duplications of chromosome 1q larger

than 1Mb (whereas the 1q region spans nearly 250 Mb), demon-

strating that our finding of two out of eight cases with trisomy of

1q is not a common variant.

Chromosome 1q containsmany genes, but among themAKT3

is a particularly strong candidate for HMG, because deletions

including AKT3 are associated with microcephaly, suggesting

a role for AKT3 in control of brain size (Ballif et al., 2012; Boland

et al., 2007; Hill et al., 2007). Furthermore, somatic-activating

mutations in AKT1 cause Proteus syndrome, and somatic-acti-

vating mutations in AKT2 have been reported to cause hypogly-

cemia and asymmetrical somatic growth (Hussain et al., 2011;

Lindhurst et al., 2011). Earlier screening for candidate mutations

in cancer-associated genes did not reveal any mutations in our

cases (data not shown), but AKT3 was not included among the

genes screened. We sequenced AKT3 as a candidate gene in

the six remaining nontrisomy cases of HMG and identified one

out of six with a somatic point mutation in AKT3. This case

(HMG-3) was a nondysmorphic boy requiring hemispherectomy

at 5 months of age for seizures beginning in the first week of life

due to right-sided HMG (MRI before surgery is shown in Figures

1G and 1H and after surgery in Figures 1I and 1J). After surgery,

he had two periods of breakthrough seizures but has been

seizure free for 6 years at 9 years of age. He has left-sided weak-

ness but walks independently, speaks fluently, is able to read,

and attends school with special education services. DNA

sequencing revealed the mutation AKT3 c.49G/A, p.E17K in

the DNA derived from the brain; this mutation was not detectable

in DNA derived from the patient’s leukocytes (Figure 3D). To

confirm the presence of the mutation in brain cells, we cloned

the PCR product from the brain and resequenced multiple

clones (Figure 3D). Forty-six individual clones showed either

the mutant sequence only (8/46, or 17.4%) or the normal

sequence only (38/46, or 82.6%) (examples are shown in Fig-

ure 3D), suggesting that the mutation exists in the heterozygous

state in z35% of the cells.

The activating nature of the AKT3 E17K mutation has been

shown previously biochemically (Davies et al., 2008). Evaluation

of data from the Exome Variant Server revealed that the AKT3

c.49G/A point mutation is not present in >5,000 control individ-

uals (http://evs.gs.washington.edu). Published estimates

suggest a somatic mutation frequency on the order of 10�9 per

cell division (Lynch, 2010b); published mutation rates from

exome sequencing in humans, coupled with extrapolation of
Neuron 74, 41–48, April 12, 2012 ª2012 Elsevier Inc. 43
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Figure 3. Mosaic Mutations in Hemimegalencephaly: Trisomy of Chromosome 1q and an Activating Point Mutation in AKT3

(A) Copy number for all of the chromosomes is shown for HMG-1; the estimated copy number for 1q is 2.41 (SD 0.12), consistent with mosaic trisomy 1q.

Chromosome 1p, as well as the other autosomes, has normal copy number of 2, and chromosomes X and Y each show copy number of 1. (B) Copy number

evaluation of Affymetrix 6.0 data shows the gain in copy number at chromosome 1q for HMG-1, with the x axis representing nucleotide position along chro-

mosome 1 and the y axis denoting copy number. (C) Assuming a copy number of 2 for all regions in the DNA derived from leukocytes (white columns), the

calculated copy number from the brain tissue (black columns) was 2.68 (SD 0.16) at 1q21.3, 2.76 (SD 0.20) at 1q31.1, and 2.73 (SD 0.13) at 1q42.2. (D) The AKT3

c.49G/A, p.E17K heterozygous mutation is present in the sequencing traces from brain-derived DNA (first row) and absent in the traces from leukocyte-derived

DNA from HMG-3 (second row). The arrows point to AKT3 nucleotide position 49. Cloning results indicate that the mutation is present in 8/46 (17.4%) of the DNA

reads from a brain tissue sample, suggesting that the mutation exists in the heterozygous state in 35% of the cells; traces from two clones are shown in the third

and fourth rows; the trace in the third row shows the results of sequencing from a clone with the AKT3 c.49G/Amutation present (A), and the bottom row shows

the results from a clone without the mutation but rather with the reference allele present (G).
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somatic mutation rates in mouse, suggest a <1 3 10�7 chance

that the specific AKT3 c.49G/A mutation would occur by

chance (Awadalla et al., 2010; Lynch, 2010a).

Somatic mutations in AKT3, which encodes the serine-threo-

nine kinase protein kinase B-gamma, have been reported in

cancers, including a p.G171R substitution mutation in a glioma

(Bamford et al., 2004). The AKT3 c.49G/A E17K mutation itself

has been observed in melanoma and lung cancer, and mela-

noma cell lines overexpressing this exact missense mutation

have been demonstrated to show increased AKT phosphoryla-

tion (Davies et al., 2008; Do et al., 2010). Most remarkably

though, the somatic AKT3mutation we report is precisely paral-

ogous to the recurrent E17K mutations in AKT1 associated with

Proteus syndrome and recurrent E17K mutations in AKT2 asso-

ciated with hypoglycemia and left-sided overgrowth, each also

with varying degrees of mosaicism (Hussain et al., 2011; Lind-

hurst et al., 2011). Interestingly, despite prior reports of

Proteus-associated HMG (Griffiths et al., 1994), no brain malfor-

mations are reported in the patients with AKT1 and AKT2 muta-

tions, consistent with the observation in mice that AKT3 may be

the predominant functional member of the AKT family in the

human brain (Easton et al., 2005).

AKT3 expression in the human fetal brain is higher than AKT3

expression in any other tissue sampled (Wu et al., 2009), sug-

gesting that its primary role is in brain development. In contrast,

AKT1 and AKT2 show levels of fetal brain expression compa-

rable to or lower than those seen in other tissues (Wu et al.,

2009). We compared the expression levels of AKT1, AKT2,

and AKT3 by RNaseq analysis of the perisylvian cortex of the

human brain at 9 weeks’ gestation, during active neurogenesis,

and found that AKT3 is expressed at higher levels than AKT1

and AKT2 (normalized read depth, reads per kilobase-exon

per million mapped reads: AKT1 = 51.90, AKT2 = 18.50,

AKT3 = 90.52). Examination of published data sets reveals

that AKT3 is expressed at a higher level than AKT1, and both

are expressed at higher levels than AKT2, starting at 8 weeks

and for the duration of human embryonic cortical development

(Kang et al., 2011). To determine the cell types in the brain

that would likely be affected by activation of AKT3, we per-

formed immunohistochemistry in sections of mouse brain by

using an antiserum that recognizes all three phosphorylated

forms of AKT (P-Akt). We observed widespread P-Akt localiza-

tion in the developing cortex, with notable enrichment in apical

progenitor cells in the ventricular zone. For example, a subset

of cells marked by P-Akt also showed the presence of P-Vimen-

tin 4A4, illustrating the presence of Akt activity in dividing radial

glial cells (Figure 4). Similarly, P-Akt colocalized with phospho-

Histone H3, a marker of M phase, in dividing apical progenitors

as well as GLAST, a marker of radial glial cells (data not shown).

Because these apical progenitor cells give rise to both neurons

and glia, this localization is consistent with activation of AKT3 in

both neurons and glia. Abnormal AKT function would be consis-

tent with the MRI patterns and neuropathological studies

(Figures 1 and 2), which show abnormal organization of neurons

in the cortex and abnormal MRI signal characteristics of white

matter.

Our data suggest that activation of AKT3, either by duplication

or by point mutation, contributes to hemispheric brain over-
growth. Two of our cases (the point mutation and one partial

trisomy) are confirmed to be de novo, somatic mutations, unde-

tectable in blood, and although nonbrain tissues were not avail-

able from the other partial trisomy case, this is likely to be

a somatic mutation as well, because individuals reported with

constitutional trisomy 1q, even a portion of 1q, show dysmor-

phic features and, in nearly all cases, early lethality (Mark

et al., 2005; Mefford et al., 2008; Patel et al., 2009). We postulate

that increasing AKT3 dosage and activation of AKT3would have

the same effect in the setting of a somatic mutation. Interest-

ingly, HMG has not been reported in the constitutional trisomy

cases, even those that have partial trisomy including AKT3. It

is possible that HMGmight not be present in the cases with early

lethality; perhaps more important, because all of the constitu-

tional trisomy 1q cases were de novo, the trisomy may not be

present in all tissues. Though we have not sampled other

tissues, there was no clinical evidence of extracerebral involve-

ment phenotypically in any of the three cases, suggesting that

either the mutation was limited to the brain or activation of

AKT3 in other tissues does not have phenotypic consequences.

Increased rates of brain cancer are not reported in the setting of

isolated HMG. In the cases we report here, which have not

shown any form of cancer, it is likely that activation of AKT3

disrupts normal cortical development but does not result in

continued dysregulated growth outside the setting of cortical

progenitor cells.

Further support for the role of AKT3 in controlling brain size

comes from animal studies. A mouse Akt3 knockout model

shows selective reduction in brain size due to decreased

neuronal number and size (Easton et al., 2005), whereas mice

with an activating mutation in the kinase domain of Akt3 show

larger hippocampal size and abnormal Ki67-positive ectopic

neurons in the hippocampus (Tokuda et al., 2011). Additionally,

in zebrafish, overexpression of wild-type akt3 produces

increased embryonic brain thickness (Chen et al., 2011). All of

these results strongly suggest that AKT3 activity dynamically

regulates brain size and that increased dosage of AKT3 might

increase brain size in humans.

Somatic mosaicism refers to the presence of more than one

genetically distinct population of cells in an individual. Somatic

mutations are thought to arise not infrequently during devel-

opment (Youssoufian and Pyeritz, 2002), and some chromo-

somal rearrangements and mutations that may be lethal if

present in the entire embryo could be sustained in clonal pop-

ulations of cells and produce localized abnormalities. The size

and architecture of HMG may be determined in part by the

stage at which the mutation occurs relative to the period of

neurogenesis, which is when AKT3 normally becomes the

predominant AKT form in brain. As better techniques emerge

for copy number and whole-exome or genome sequencing on

smaller and smaller amounts of DNA, somatic mutations in

other genes might emerge as causes of other neurogenetic

disorders not associated with obvious morphological pheno-

types like HMG. For example, de novo copy number varia-

tions are an important cause of autism spectrum disorders

and schizophrenia (Sanders et al., 2011), and hence may

also occur somatically. In epilepsy, at least one third of indi-

viduals with imaging-negative, refractory, focal seizures
Neuron 74, 41–48, April 12, 2012 ª2012 Elsevier Inc. 45



Figure 4. Active Akt Signaling in the Developing Cortex Is Enriched in Apical Progenitor Cells and the Cortical Plate

(A) Immunohistochemistry of cortical sections at embryonic day 10.5 (E10.5) reveals Akt activity as assessed by pan-phospho(P)-Akt immunostaining (red) in the

cortical plate and ventricular zone. (B–D) Higher-magnification images of ventricular zone at E10.5 are shown. Overlay of P-Akt with P-Vimentin 4A4 (green) shows

that dividing radial glial cells, which generate cortical pyramidal neurons and glial cells, are P-Akt positive. (E–H) At E14.5, dividing radial glial cells show a similar

pattern of immunostaining for P-Akt and P-Vimentin 4A4. (I–K) High-magnification images of the areas delineated bywhite boxes in (F)–(H) demonstrate that P-Akt

activity (marked by arrowheads) is not restricted to the P-Vimentin 4A4-positive-staining, M phase cells in the ventricular zone. The arrows indicate an example of

a P-Akt-positive, P-Vimentin 4A4-negative cell. Nuclei are labeled with Hoechst. Scale bars represent 50 mm.MZ,marginal zone; CP, cortical plate; SP, subplate;

IZ, intermediate zone; SVZ, subventricular zone; VZ, ventricular zone.
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show pathological evidence of dysplasia (Porter et al., 2003)

that may also be due to somatic mutations. Therefore, more

detailed exploration of somatic mosaicism may allow for
46 Neuron 74, 41–48, April 12, 2012 ª2012 Elsevier Inc.
better genetic understanding of many neurogenetic disorders,

especially those for which de novo mutations are known to

play a role.
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EXPERIMENTAL PROCEDURES

Brain Sample Ascertainment

Tissue samples for molecular analysis were available through two sources: (1)

patients enrolled in clinical research in accordance with requirements of the

Institutional Review Boards of Children’s Hospital Boston (CHB) and Beth

Israel Deaconess Medical Center (six cases, including HMG-1 and HMG-3)

and (2) excess tissue obtained from the Brigham and Women’s Hospital

Department of Neurosurgery Tissue Bank, along with limited clinical informa-

tion (two cases, including HMG-2).

Phenotypic Assessment

Detailed clinical information and leukocyte-derived DNA were available for six

cases enrolled in human subjects research, including HMG-1 and HMG-3. We

reviewed the history and examination of each case reported (A.P., B.F.D.B.,

and J.J.R.) and the MRI (A.P., A.J.B., and C.A.W.). Table S1 summarizes the

imaging and neuropathological findings of the three cases with mutations.

Neuropathological Analysis

Formalin-fixed paraffin-embedded sections from the clinical resection speci-

mens were obtained from the CHB pathology archives for pathological re-

review by a board-certified neuropathologist (K.L.L.). Slides were stained

with hematoxylin and eosin (H&E) and cresyl violet and luxol fast blue accord-

ing to standard methods.

Immunohistochemistry was performed by using phosphorylated neurofila-

ment (SMI31, Covance) and Ki67 (DAKO, Clone MIB1) using DAKO Envision

Plus and diaminobenzidine development.

Copy Number Assessment

We obtained eight samples of flash-frozen brain tissue resected during focal

epilepsy surgery for HMG. DNA was extracted by using standard methods

and was then digested, amplified, and hybridized to Affymetrix 100K SNP

arrays for six of the samples (Affymetrix). In the original arrays (e.g., 100K),

copy number was assessed based on intensity of signal from each SNP. For

the Affymetrix 6.0 arrays, copy number probes are included in addition to

the full array of SNPs, and both are used for quantitation. The Gaussian-

smoothed signal log2-ratio of all probe intensities normalized to a reference

of 270 normal HapMap samples was calculated by Affymetrix Genotyping

Console with standard settings. Additional DNA from HMG-1 and two other

samples was assessed by using the Affymetrix 6.0 SNP array. The software

dChipSNP was used for analysis.

For HMG-1 andHMG-2, we performed qPCR in cases inwhich copy number

change was detected. Primers were designed to 1q44 and 1p21.1. DNA from

two control individuals (Promega) was used for comparison. We repeated

qPCR in an additional specimen fromHMG-1 for confirmation by using primers

targeting 1p (1p13.3, 1p32.3, and 1p36.2) and 1q (1q21.3, 1q31.1, and

1q42.2).

Leukocytes were obtained from six of the cases; DNA was extracted by

using standard methods and was used for SNP analysis as above. For

HMG-1, we performed SNP analysis and clinical karyotype to assess for the

presence of the trisomy 1q in peripheral blood leukocytes (evaluating 50 cells

to detect even a low level of mosaicism).

Screening for Candidate Mutations in Oncogenes

Based on the hypothesis that our cases harbor somatic mutations in genes

that result in dysregulated growth, we screened the DNA from the brain

samples for a panel of known point mutations in cancer-associated genes

(OncoMap Project, Dana Farber Cancer Institute) (MacConaill et al., 2009).

This panel did not include AKT3; genes included in the 1q region were

ABL2, DDR2, and NTRK1.

Evaluation for AKT3 c.49G/A-Activating Mutations

We designed primers by using Primer 3 software (http://primer3.sourceforge.

net) for the second exon of AKT1, AKT2, and AKT3 in order to evaluate nucle-

otide position 49. In cases without trisomy 1q, we sequenced DNA from brain

tissue (six HMG cases) and leukocytes from the same cases (five cases).
Evaluation for Mosaicism of the AKT3 Mutation in HMG-3

To determine the degree of mosaicism in the brain tissue specimen of HMG-3,

we performed TOPO TA cloning by using standard methods (Invitrogen),

successfully analyzing 46 clones for the AKT3 c.49G/A mutation.

Estimation of the Likelihood that the AKT3 Mutation Would Occur

by Chance

Published sequencing data indicate that each individual has approximately

one to two de novo nonsynonymous variants per diploid genome generation

(Awadalla et al., 2010). The likelihood that this would affect this one base

pair in all of the 6 3 107 base pairs of the diploid genome is therefore 23

10�8–3 3 10�8. Correcting by a factor of 10 to reflect the increased somatic

versus germline mutation rate (Lynch, 2010a) and accounting for three poten-

tial mutations at a given nucleotide position, the estimated likelihood that our

mutation would occur by chance is at most 1 3 10�7.

Localization of P-AKT in the Developing Cortex

We labeled embryonic mouse cortex at embryonic day 10.5 (E10.5), E12.5,

E14.5, E16.5, and E18.5 with the following antibodies: rabbit anti-phospho-

Akt 1:50 (4060S, Cell Signaling), mouse anti-phospho-Vimentin 4A4 1:100

(Assay Designs), rabbit anti-phospho-Histone H3 1:400 (Upstate), and anti-

GLAST 1:5,000 (Chemicon).

RNA-Seq Analysis of AKT Isoforms in the Developing Human Cortex

We obtained snap-frozen brain tissue from a human fetus at roughly 9 weeks’

gestation from the Institute of Human Genetics at Newcastle University. RNA

was isolated from several regions of the cortex, including the perisylvian

region, and purified by using standard methods. We purified polyA-tailed

mRNA by using an Oligotex mRNAminikit (QIAGEN) and prepared a barcoded

sequencing library by using the SOLiD Whole Transcriptome Analysis Kit

(Applied Biosystems). We sequenced the library on the SOLiD v3 Plus system

(read depth: 105million reads), mapped the reads with Bioscope v1.2 (Applied

Biosystems) to the hg18 human genome reference, and normalized coverage

of uniquely mapping reads to the number of million mapped reads.
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