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Abstract

Although autism has a clear genetic component, the high genetic heterogeneity of the disorder has been a challenge for
the identification of causative genes. We used homozygosity analysis to identify probands from nonconsanguineous
families that showed evidence of distant shared ancestry, suggesting potentially recessive mutations. Whole-exome
sequencing of 16 probands revealed validated homozygous, potentially pathogenic recessive mutations that segregated
perfectly with disease in 4/16 families. The candidate genes (UBE3B, CLTCL1, NCKAP5L, ZNF18) encode proteins involved in
proteolysis, GTPase-mediated signaling, cytoskeletal organization, and other pathways. Furthermore, neuronal depolariza-
tion regulated the transcription of these genes, suggesting potential activity-dependent roles in neurons. We present a
multidimensional strategy for filtering whole-exome sequence data to find candidate recessive mutations in autism, which
may have broader applicability to other complex, heterogeneous disorders.
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Introduction

Autism is a neurodevelopmental disorder characterized by

impaired communication skills, social behavior abnormalities, and

stereotypies, with a prevalence of ,1/150 children [1]. It is

considered to be one of the most highly genetic neuropsychiatric

disorders with a heritability of 40–80% [2,3]. Family studies show

that siblings of autistic children are at a ,25-fold higher risk to

develop autism than the general population [4], and twin studies

show concordance of the autism phenotype in 20–30% of

dizygotic twins and ,60% of monozygotic twins [3,4]. Genome-

wide linkage and association studies, and candidate gene

approaches have identified several susceptibility loci and impli-

cated potential autism genes [5–7]. The fact that no single genetic

aberration accounts for more than 1% of cases suggests extreme

genetic heterogeneity [8,9], posing a major challenge to identifying

causative genes. To date genes have been identified on the basis of

overlap with other syndromic neurodevelopmental disorders (e.g.

Fragile X syndrome, Angelman syndrome, Rett syndrome),

chromosomal abnormalities and copy number variation, and as

causes for nonsyndromic autism (e.g. NRXN1, NLGN3/4X,

SHANK3) [4,10]. In a few cases, autism has been shown to be

caused by homozygous recessive mutations due to recent shared

ancestry [11], although the contribution of recessive mutations in

outbred populations remains unexplored.

Recessive mutations in autism may behave like other rare

recessive traits, thus allowing gene mapping using homozygosity

analysis. Homozygosity mapping is frequently employed to isolate
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disease genes in families where the parents are known to be

definably related, typically as cousins, which increases the risk for

recessive disease [12–14]. However homozygous recessive ‘‘found-

er’’ mutations are also common in patients whose parents share

only distant ancestry, common ethnicity, or in some cases no

apparent ancestry at all [15], and population analysis of runs of

homozygosity has been used to define genomic loci that may

harbor such mutations in diseases characterized by genetic

heterogeneity [16–18]. Here we surveyed the mutational spectrum

in individuals with autism from nonconsanguineous populations

who were selected for the high degree of homozygosity in the

genome, since high levels of homozygosity suggest distant or

cryptic shared ancestry of the parents. We identified several

patients with potentially new autism mutations, and found that a

surprising number of these mutations occurred in genes that are

regulated by neuronal depolarization.

Results/Discussion

To sort the genetic heterogeneity of autism, we used

homozygosity analysis [19] to identify a subset of patients likely

to be enriched for recessive mutations. We performed a

homozygosity-based analysis of 1000 families (5,431 individuals)

in the Autism Genetic Research Exchange (AGRE) [20] cohort.

Though most American families in this cohort are of mixed

European ancestry and share no acknowledged near ancestors, we

hypothesized that a small proportion of European-American

parents share a traceable common ancestor, or may share

common ethnic ancestry through both parental lines, which in

either case may result in homozygosity for rare recessive founder

mutations, as has been demonstrated for a host of known

Mendelian recessive diseases [21]. We identified a small subset

of ‘‘outlier’’ AGRE families (,2% of the total) in which the

affected children show runs of homozygosity totaling up to ,9%

of their genome. This low proportion of families with elevated

homozygosity is consistent with low reported rates of consanguin-

ity in the AGRE collection. Nonetheless, in the few outlier

families, rates of homozygosity are far higher than generally

observed in individuals whose parents have no common ancestry

(#1.6%), and overlap or exceed in some cases the predicted range

of homozygosity expected in offspring of first cousin parents

(6.25%) [22] (Figure 1A). The sizes of homozygous blocks in

probands from these outlier families ranged from ,5–19 cM on

average (Figure 1B), suggesting ancient shared ancestry in these

families compared to larger blocks of homozygosity seen in

consanguineous families ($20 cM) [22]. Since the AGRE dataset

provides no specific information about shared ancestry or

consanguinity between parents, we explored the level of shared

ancestry between parents, by performing tests to estimate

relatedness between individuals based on identical-by-state (IBS)

and identical-by-descent (IBD) genotype information [23,24]. We

find that for 16 families where probands had the largest amount of

homozygosity in their genomes, some of the parental pairs were

more closely related than average (Figure S1), but that parental

relatedness by itself, as analyzed by these methods, did not always

predict the degree of homozygosity in the offspring.

We performed whole exome sequencing in 16 AGRE patients,

selected because they showed the largest total proportion of their

genome homozygous (,1%–9%) of all patients in the collection.

We reasoned that some of the runs of homozygosity would contain

homozygous causative mutations. Whole exome sequencing allows

for the high-throughput, unbiased survey of all exonic variation in

a patient, including any known mutations. Sequencing was

performed using the Illumina Genome Analyzer II platform

following enrichment of exonic sequences using Agilent’s Sur-

eSelect Human Exome Kit. We obtained an average coverage of

92% at 20X (Table S1), and identified an average of 34,615 total

variants per exome (Table S2), subsequently filtering them to

identify rare, likely deleterious changes. Since we wanted to

identify rare private mutations, common variants identified by the

1000 Genomes project and dbSNP130 were filtered out, and

remaining variants were subject to an in-house bioinformatics

pipeline to annotate variants that may disrupt gene function (by

altering the coding sequence, the splice sites, or truncating the

protein). On average, 735 variants per exome were potentially

pathogenic, and out of these, 39 per genome (on average) were

homozygous (Table S2). The availability of whole exome sequence

allowed us to test each patient systematically for mutations in

known autism genes on the autosomes as well as the X

chromosome, and no inherited mutations that were predicted to

be damaging in well-documented autism genes were found in the

16 patients.

To rule out variants that arose from spontaneous cell line

artifacts, somatic mosaic mutations, or sequencing errors, we

validated all homozygous variants in all family members using

Sequenom technology. Genotyping candidate variants in the 16

probands allowed us to examine inheritance of variants as well as

segregation with disease, since many families had multiple affected

individuals as well as unaffected siblings (Figure S2). Variants that

did not validate with Sequenom genotyping despite high

sequencing depth ($100) generally occurred in regions of the

genome that were not uniquely mappable. For uniquely mapped

variants, the rate of validation correlated well with sequencing

depth (Pearson’s correlation = 0.532, P = 0.001610230, t-test)

(Figure S3). Analysis of segregation further permitted us to focus

on bona fide inherited mutations as we only considered those

variants that were homozygous in the proband (by whole exome

sequencing and Sequenom confirmation), heterozygous or absent

in unaffected siblings, and transmitted from heterozygous parents.

This validation step thus eliminates any possible sequencing errors

or somatic mutations that complicate many high-throughput

sequencing studies. We overlaid the validated variants with the

result of our homozygosity analysis and further focused our

attention on that subset of variants that fell within runs of

homozygosity shared by affected siblings and absent from

unaffected siblings. This allowed us to narrow down the number

of candidate variants per exome, and for four families only 1

variant segregated with the disease (Table 1, Figure 1C). For some

families our approach did not yield any candidate recessive

variants as expected, since homozygous variants will not

necessarily be causative even in some families selected based

upon homozygosity. We then further examined the prevalence of

candidate homozygous mutations in a control population of ,700

Author Summary

Autism spectrum disorders are neurodevelopmental dis-
orders that are genetically highly heterogeneous, with no
single gene accounting for more than 1% of cases. In order
to identify recessive mutations, we selected probands from
an outbred population based on abundance of homozy-
gosity in their genomes. We interrogated the entire coding
sequences of 16 probands that had evidence of parental
shared ancestry and identified four candidate autism
genes. Furthermore, the expression of these genes was
responsive to neuronal activity. We present a strategy for
identifying candidate recessive mutations in genetically
complex disorders.

Homozygosity and Whole-Exome Analysis in Autism
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normal individuals. We were able to exclude homozygous variants

based on several criteria including: prevalence in controls, the

genes not being expressed in brain, or the genes being mutated in

other disorders (Table S3). Under this variant prioritization model

(Figure 2), candidate autism mutations were identified in four of

the 16 probands (Table 2, Figure 1C), with these candidate disease

variants falling within runs of homozygosity shared by affected

siblings and absent from unaffected siblings.

The candidate mutations identified in this study implicate

several candidate genes in autism that encode proteins involved in

small GTPase mediated signal transduction, transcriptional

regulation, and protein modification processes (Table 2). Among

the mutations we identified is a homozygous c.144 C.T change

that creates an R40C mutation in ubiquitin protein ligase E3B

(UBE3B), a member of the E3 ubiquitin-conjugating enzyme

family. UBE3B is highly expressed in the brain and may play a

role in stress response [25]. The UBE3B R40C mutation identified

in AU035204 is predicted to be damaging, was homozygous in

both affected children (monozygotic twins), heterozygous in the

parents and unaffected sibling (Figure S2), and was absent in the

homozygous state in 1344 control chromosomes. UBE3B is highly

conserved across species and belongs to the same family as

UBE3A, the gene disrupted in Angelman syndrome, a neurode-

velopmental disorder characterized by intellectual disability,

movement or balance problems, abnormal behaviors, and speech

and language impairment. Recent work has shown that experi-

ence-driven neuronal activity induces Ube3a transcription and that

it regulates excitatory synapse development and function through

targeting the key synaptic molecules Arc and Ephexin5 [26,27].

We also narrowed down the candidate genes to only one in

AU1328302. An R125C mutation in CLTCL1, encoding clathrin

heavy chain-like 1, was homozygous in both affected children,

heterozygous in the parents and unaffected sibling, and predicted

to be damaging (Table 2 and Figure S2). CLTCL1 is disrupted in a

patient with features of DiGeorge syndrome, including intellectual

disability, facial dysmorphia, long slender digits, and genital

anomalies [28]. It encodes a member of the clathrin heavy chain

family, representing a major structural component of coated pits

and vesicles involved in intracellular trafficking, which are

important to glutamate receptor turnover.

Figure 1. Homozygosity analysis in the AGRE collection. (A) A plot of the percent homozygosity in the genome of probands from the entire
AGRE collection. All affected individuals with runs of homozygosity (ROHs) .5 cM are plotted. Offspring of first cousin marriages are expected to
have 6.25% homozygosity in their genomes, while those of second cousin marriages are expected to have 1.6%. IBD: identity by descent. (B) The
average sizes of the ROHs in cM are plotted for each of the 16 AGRE samples that were sequenced. The number of the ROHs is shown in each bar.
Values are mean 6 SEM. (C) ROHs containing candidate disease variants are shared by affected individuals and absent from unaffected individuals.
Sample names are indicated on the left (Aff.Sib: affected sibling, Unaff.Sib: unaffected sibling). Homozygous SNPs are shown in red or blue and
heterozygous SNPs are shown in green. ROHs are enclosed in the dotted box. The candidate autism gene in each family is shown in navy below the
ROHs. All other genes in grey did not contain rare, potentially pathogenic variants. No whole genome SNP data is available for individual AU035203,
but we genotyped the sample for all homozygous variants identified by the whole exome sequencing of AU035204.
doi:10.1371/journal.pgen.1002635.g001

Homozygosity and Whole-Exome Analysis in Autism
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Since resequencing of candidate genes in a larger cohort is an

important validation step in evaluation of any candidate gene, we

screened a larger independent cohort of whole exome data from

418 autism cases and 371 controls, sequenced as part of the ARRA

Autism Sequencing Consortium. DNA from these cases and

controls underwent whole exome capture, cloning and sequencing

in the same fashion that our 16 cases did at the Broad Institute.

For all four genes, we compared the rate of mutations under a

recessive model, looking for either homozygous or compound

heterozygous mutations in cases versus controls. As a group, the 4

genes showed a higher number of recessive mutations (homozy-

gous or compound heterozygous) in cases (24/418, 5.7%)

compared to controls (11/371, 3.0%) (P = 0.042, Fisher’s exact

test, one-tailed). These mutations were all missense changes and

were relatively rare, all with allele frequencies of #5% (Table 3).

One gene, CLTCL1, especially stood out compared to the other

Figure 2. A four-dimensional approach to identifying autism candidate genes. Overview of variant filtration and prioritization of whole
exome sequencing data. Results from variant validation and homozygosity analysis were combined with neuronal activity data to identify candidate
autism genes from whole exome sequence. 1000G: 1000 Genomes Project, GMCC: genomic mutation consequence calculator, ROHs: runs of
homozygosity.
doi:10.1371/journal.pgen.1002635.g002

Table 1. Whole-exome sequencing identifies rare, previously unreported homozygous variants in 16 AGRE autism patients.

Homozygous variants Validated

Patient WES Sequenom design Sequenom run Validated Segregate with disease …and in ROHs

AU070811 32 27 (84%) 22 (81%) 10 (45%) 2 1

AU035204 48 40 (83%) 34 (85%) 12 (35%) 5 4

AU081204 29 25 (86%) 20 (80%) 8 (40%) 0 0

AU075308 36 30 (83%) 23 (77%) 11 (48%) 2 1

AU1328302 38 34 (89%) 30 (88%) 15 (50%) 1 1

AU1261301 35 30 (86%) 26 (87%) 15 (58%) 0 0

AU1353302 26 23 (88%) 17 (74%) 9 (53%) 1 0

AU1252302 32 25 (78%) 21 (84%) 9 (43%) 1 0

AU037103 25 24 (96%) 18 (75%) 10 (56%) 1 1

AU1019301 53 45 (85%) 38 (84%) 15 (39%) 3 2

AU1388301 45 40 (89%) 31 (77%) 22 (71%) 0 0

AU1196301 54 49 (91%) 41 (84%) 17 (41%) 0 0

AU022203 40 37 (92%) 34 (92%) 8 (23%) 1 0

AU000504 41 29 (71%) 25 (86%) 13 (52%) 0 0

AU039903 40 33 (82%) 31 (94%) 16 (52%) 2 2

AU062504 43 36 (84%) 28 (78%) 12 (43%) 0 0

ROHs: runs of homozygosity; WES: whole exome sequence.
doi:10.1371/journal.pgen.1002635.t001

Homozygosity and Whole-Exome Analysis in Autism
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four genes, having 17 mutations in cases versus 6 mutations in

controls (Table 3).

Genes with essential roles in synaptic plasticity have been

implicated as an important cause of autism (e.g. NRXN1, NLGN3/

4X, SHANK2/3) [29,30], and since many synaptic plasticity genes

are regulated by neuronal depolarization [11,31], we tested the

degree to which our autism candidate genes showed expression

that could be modulated by neuronal activity. We depolarized

mouse cortical neuron cultures and assayed changes in gene

expression levels. We found that four out of four of the mouse

homologs of our candidate genes are upregulated in response to

neuronal activity (UBE3B, CLTCL1/Cltc, NCKAP5L, and ZNF18/

Zkscan6) (Figure 3). This is particularly interesting because in

general only about 1000 transcripts, or about 3% of the

transcriptome, manifest such depolarization-regulated gene tran-

scription [32]. The upregulation of Ube3b in response to

depolarization resembles the activity-dependent transcription of

its close paralog Ube3a, which has well-documented roles in

synaptic plasticity [26,27]. The regulation of expression of several

potential recessive autism genes by neuronal depolarization

suggests that the candidate genes are likely to be involved in

neuronal function and/or development, and mutations in these

genes might lead to nervous system dysfunction in the context of

autism spectrum disorders (ASDs).

In the 12/16 patients for whom we did not identify homozygous

candidate mutations, we examined the mutational spectrum under

different models of inheritance. Out of an average of 696 rare,

heterozygous, and potentially deleterious variants per exome, we

identified 67 candidate compound heterozygous changes (at least

two deleterious variants in the same gene). Sequenom genotyping

validated an average of 27 of these variants, and phasing of the

resulting set in trios revealed ,4 true compound heterozygotes

with one allele inherited from each parent. Genotyping of

unaffected siblings when available reduced this number to ,2

variants per individual consistent with fully penetrant, recessive

disease (Table S4). For three patients, we narrowed down the

candidates to 1 gene and for 8 patients there were no candidate

genes with compound heterozygous variants (Table S5). Analysis

of X-linked mutations did not identify mutations in well-validated

X-linked autism genes, though 11/14 male patients carried rare

hemizygous X-linked variants, three of which occurred in genes

associated with intellectual disability (ARHGEF6, AFF2, and

OCRL). The first variant in ARHGEF6, which encodes Rac/

Cdc42 guanine nucleotide exchange factor 6, results in an I444N

mutation. The second variant in AFF2, encoding Fragile X mental

retardation 2, causes a P847A mutation that is predicted to be

benign by PolyPhen-2. The third variant disrupts a splice donor

site in OCRL (oculocerebrorenal syndrome of Lowe gene) (Table

S6). Splicing mutations in OCRL have been identified in patients

with Lowe oculocerebrorenal syndrome [33–36], characterized by

hydrophthalmia, cataract, intellectual disability, vitamin D-

resistant rickets, amino aciduria, and reduced ammonia produc-

tion by the kidney. Since patient AU1019301 is not known to

exhibit a renal phenotype or any other Lowe syndrome

phenotypes, it is unlikely that this mutation is causative of the

neurological condition of the patient. Segregation analysis showed

that these three X-linked mutations were inherited from

heterozygous mothers, confirming that they are not cell line

artifacts. Since our study design enriched for families with

potential shared inheritance, it does not permit confident

determination of the causative nature of these potential compound

heterozygous or X-linked mutations, which could only be tested by

analysis of additional cases.
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Our results illustrate both the challenges and the potential of

whole exome sequencing in an extremely genetically heteroge-

neous condition such as autism. Each exome contains large

numbers of variants that initially challenge analysis. We present a

systematic method to approach whole exome data, by filtering for

variants compatible with identity by descent, surveying preva-

lence in controls, segregation analysis, and incorporating

functional information (Figure 2). Almost all instances in which

new genetic syndromes have been identified using whole exome

or whole genome sequencing have involved families with

recessive disorders generally (Miller syndrome) [37,38] and/or

shared parental ancestry specifically (WDR62-associated cortical

malformations) [39], because the analysis of homozygous mu-

tations provides tremendous power to improve ‘‘signal to noise’’

caused by sequencing errors, spontaneous cell line mutations,

somatic mutations, etc. Hence, tracing ancestry may be an

important tool to define genetic causes in a subset of autism

patients. Our study further emphasizes the power of whole exome

and whole genome approaches in allowing a complete survey of

all potential mutations in the patient genome, and the systematic

screening of all major modes of inheritance. Recent studies have

confirmed the contribution of de novo point mutations (5–20% of

Table 3. Whole-exome screen identifies additional potential recessive mutations in the four candidate autism genes.

Gene symbol SNP Position Mutation Zygosity Cases Controls

UBE3B rs61748069 chr12: 108,420,439 S280P Homozygous 0 1

UBE3B rs61748069 chr12: 108,420,439 S280P Compound heterozygous 1 0

var_12_109948232 chr12: 108,432,615 R609C

CLTCL1 rs5748024 chr22: 17,548,288 R1620H Compound heterozygous 10 4

rs2073738 chr22: 17,550,956 V1592M

CLTCL1 rs5748024 chr22: 17,548,288 R1620H Compound heterozygous 1 0

var_22_19241688 chr22: 17,621,688 A105T

CLTCL1 rs2073738 chr22: 17,550,956 V1592M Compound heterozygous 1 0

var_22_19241688 chr22: 17,621,688 A105T

CLTCL1 var_22_19184109 chr22: 17,564,109 R1311Q Compound heterozygous 1 0

rs1060374 chr22: 17,593,033 E691K

CLTCL1 var_22_19184113 chr22: 17,564,113 E1310K Compound heterozygous 1 0

var_22_19222211 chr22: 17,602,211 E330K

CLTCL1 var_22_19187289 chr22: 17,567,289 V1277I Compound heterozygous 0 1

rs117542241 chr22: 17,578,017 N1023I

CLTCL1 rs34486244 chr22: 17,576,615 E1087K Compound heterozygous 0 1

rs45489597 chr22: 17,597,422 R574H

CLTCL1 rs35398725 chr22: 17,587,491 K941R Compound heterozygous 1 0

rs45489597 chr22: 17,597,422 R574H

CLTCL1 rs5746697 chr22: 17,610,365 K205R Compound heterozygous 1 0

var_22_19241688 chr22: 17,621,688 A105T

CLTCL1 var_22_19241688 chr22: 17,621,688 A105T Compound heterozygous 1 0

rs3747059 chr22: 17,643,214 P61L

NCKAP5L var_12_50186544 chr12: 48,472,811 S1189N Compound heterozygous 1 0

var_12_50187579 chr12: 48,473,846 A1066S

NCKAP5L var_12_50187579 chr12: 48,473,846 A1066S Homozygous 1 0

NCKAP5L var_12_50187579 chr12: 48,473,846 A1066S Compound heterozygous 0 1

rs3741554 chr12: 48,476,934 L326M

NCKAP5L rs3741554 chr12: 48,476,934 L326M Homozygous 2 0

ZNF18 rs117755721 chr17: 11,822,081 S523L Compound heterozygous 0 1

rs62621364 chr17: 11,822,223 F476L

ZNF18 rs117755721 chr17: 11,822,081 S523L Compound heterozygous 0 1

var_17_11894428 chr17: 11,835,153 P147L

ZNF18 rs62621364 chr17: 11,822,223 F476L Homozygous 0 1

ZNF18 var_17_11881611 chr17: 11,822,336 C438Y Compound heterozygous 1 0

var_17_11894428 chr17: 11,835,153 P147L

ZNF18 var_17_11894428 chr17: 11,835,153 P147L Homozygous 1 0

Summary of the results of sequence analysis of the 4 candidate autism genes in an independent cohort of 418 autism cases and 371 controls from the ARRA Autism
Sequencing Consortium. All four genes (UBE3B, CLTCL1, NCKAP5L, and ZNF18) were analyzed for recessive mutations, either homozygous or compound heterozygous.
doi:10.1371/journal.pgen.1002635.t003
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cases) [40] and de novo copy number variants (5–10% of cases)

[41] to autism.

Our data suggest a potentially important role for recessive

mutations in autism. Though our pre-selection of 16 patients for

whole exome sequencing, and our limited analysis of whole exome

data from .400 cases in the ARRA Autism Sequencing

Consortium, does not allow us to calculate the proportion of

cases likely attributable to recessive as opposed to other causes (e.g.

de novo, X-linked), our data do suggest that a systematic analysis of

recessive causes of autism would be worthwhile. Homozygous null

mutations appear to be exceedingly rare in autism, while

homozygous missense changes were found in several candidate

genes (Table 2), consistent with the possibility that some cases of

ASD may reflect hypomorphic mutations in genes that have more

severe phenotypes when completely disabled [11]. On the other

hand, compound heterozygous recessive mutations could be more

common in the outbred families represented by the AGRE.

Furthermore, we find that different patients showed candidate

mutations in different ASD candidate genes, confirming that

recessive autism genes are likely to be highly heterogeneous. On

the other hand, several of the genes we identified represent new

neuronal depolarization-dependent genes, further supporting a

role of defective synaptic transmission and neuronal plasticity in

the pathogenesis of ASD.

Finally, the approach employed here might be of value to the

dissection of other complex traits where extreme genetic

heterogeneity is suspected or confirmed. Since many neuropsy-

chiatric conditions - including schizophrenia, intellectual disability,

and epilepsy - often (albeit not exclusively) arise from loss of gene

function, it is reasonable to suppose that recessive loss of gene

function may play detectable roles in other conditions. Despite the

rich variation in the human exome, our study design and approach

to variant prioritization allowed identification of candidate autism

genes from a relatively small sample.

Materials and Methods

Subjects
Whole exome sequencing was performed on DNA samples from

the AGRE collection available at the Broad Institute. All human

studies were reviewed and approved by the institutional review

board of the Children’s Hospital Boston, the Broad Institute,

Cambridge, and the local institutions.

Homozygosity analysis
The analysis was performed using the Illumina 550 SNP

genotype data for 1000 families from the AGRE collection. The

data was obtained with permission from the AGRE [42]. Runs of

homozygosity were calculated using custom scripts, allowing for no

more than 2 consecutive heterozygous SNPs in a run and 3

heterozygous calls in every 10 consecutive SNPs. Intervals

homozygous for the same haplotype and shared by all affected

individuals were used to narrow the locus in each family.

Estimating relatedness
We used PLINK [23] to calculate the probability that one allele

is shared IBD (Z1), and we calculated IBS2*_ratio and the percent

of informative SNPs as described by Stevens et al. [24]. Briefly,

IBS2*_ratio is equal to (IBS2*)/(IBS2*+IBS0), and the percent of

informative SNPs is equal to (IBS0+IBS2*)/(IBS0+IBS1+IBS2),

where IBS0 is the total number of observations in which two

discordant homozygotes are present, and IBS2* results when two

concordant heterozygotes are compared between any pair of

individuals.

Whole-exome sequencing and data analysis
Exome enrichment was performed on 3 mg of genomic DNA,

using the SureSelect Human Exome Kit (Agilent Technologies,

Inc., Santa Clara, CA), according to the manufacturer’s protocol.

The kit covers exonic sequences of ,18,500 genes and a total of

,33 Mb of target territory. The captured, purified and amplified

library targeting the exome from each patient was sequenced on

the Illumina GA II. Paired-end sequences were obtained at a read

length of 72 bp.

High-throughput sequence analysis was performed according to

a customized bioinformatic pipeline for tracking sequence data,

aligning reads, calculating coverage, calling variants, annotating

variants with respect to functional effect, filtering out benign

variation and flagging candidate rare, pathogenic mutations.

Briefly, BWA version 0.5.7 (ref. 3) was employed to align reads to

the human genome (reference build hg18). Consensus and variant

base calls were made with SAMtools version 0.1.7 (pileup), filtered

for quality (mapping quality .10 for insertions and deletions, and

.25 for SNPs), and loaded into a MySQL database for storage

and further processing, including annotation of the predicted

consequences (noncoding, coding synonymous, coding nonsynon-

ymous or frameshift, splice site) of each variant using GMCC [43]

(Genomic mutation consequence calculator). Candidate mutations

were identified by starting with a list of all variants, removing those

present either in dbSNP130 or the 1000 Genomes Project

database, and selecting for coding nonsynonymous, frameshift or

splice site changes. Sequence data were visualized using either the

UCSC Genome Browser or the Broad Institute Integrated

Genome Viewer. All genomic base positions are presented in

reference to the human genome NCBI build 36 (hg18). The

functional effect of the mutation on the protein was assessed using

PolyPhen-2 [44].

Figure 3. Regulation of four candidate autism genes by
neuronal activity. qRT-PCR analysis of total RNA from depolarized
mouse cortical neurons stimulated with KCl for 6 hours (the dashed line
represents no KCl treatment, values are mean 6 SEM from three
independent experiments, each experiment was performed in triplicate,
***P,0.0001, **P,0.004, *P,0.04, t-test).
doi:10.1371/journal.pgen.1002635.g003
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Sequenom genotyping
Sequenom genotyping of variants in the probands and their

family members was performed on the iPLEX Gold platform at

the Broad Institute. Variants were genotyped in control individuals

also using the Sequenom iPLEX Gold assay at the Molecular

Genetics Core Facility at Children’s Hospital Boston. The controls

collection consisted of 704 neurologically normal samples obtained

from the Coriell Cell Repositories (Camden, NJ; 584 Caucasian

samples), or available in our lab (80 Saudi and 40 Bedouin

samples).

Resequencing analysis of candidate genes in the ARRA
Autism Sequencing Consortium

We screened whole exome sequencing data from a total of 789

exomes (418 autism cases and 371 controls) that were sequenced at

the Broad Institute (as described above) as part of a case-control

study by the ARRA Autism Sequencing Consortium. Recessive

mutations (homozygous and compound heterozygous) were

counted in cases and in controls and a Fisher’s exact test was

used to determine whether the number of mutations in cases was

significantly different than the number in controls. Samples in this

study are of European ancestry from the AGRE collection, the

Autism Sequencing Consortium (ASC), and the National Institute

of Mental Health (NIMH).

Mouse cortical cultures
E16.5 C57B6 mouse embryo cortices were dissected and then

dissociated in 16Hank’s Balanced Salt Solution (HBSS), 20 mg/

ml trypsin (Worthington Biochemicals, Lakewood, NJ), and

0.32 mg/ml L-cysteine (Sigma, St. Louis, MO) for 10 minutes.

Trypsin treatment was terminated with three two-minute washes

in 16 HBSS with 10 mg/ml trypsin inhibitor (Sigma, St. Louis,

MO). Trituration of cells was performed with a flame-narrowed

Pasteur pipette to fully dissociate cells. Neurons were seeded at an

approximate density of 16106/well on 6-well culture plates. The

dishes were pre-coated overnight with poly-ornithine (30 mg/mL,

Sigma) in water, washed three times with water, and washed once

with Neurobasal Medium (Life Technologies, Carlsbad, CA)

before use. Neurons were maintained in 2 ml/well Neurobasal

Medium containing B27 Supplement (2%; Invitrogen, Carlsbad,

CA), penicillin-streptomycin (50 mg/ml penicillin, 50 U/ml strep-

tomycin, Sigma) and glutamine (1 mM, Sigma, St. Louis, MO).

Neurons were grown in vitro for 7 days. 8 ml of the medium was

replaced with 10 ml fresh warm medium on the 4th and 6th days

in vitro (DIV).

Membrane depolarization and quantitative RT–PCR
detection of activity induction

For KCl depolarization of neurons, DIV 6 neurons were

quieted overnight in 1 mM TTX and 100 mM APV, and they were

incubated for 0 or 6 hours in 55 mM KCl. Total RNA was

isolated from cultures using 1 ml Trizol/well according to the

manufacturer’s instructions (Invitrogen, Carlsbad, CA). Isolated

RNA was treated with DNAseI Amplification Grade (Invitrogen,

Carlsbad, CA) and cDNA library was synthesized by cDNA High

Capacity cDNA Reverse Transcription Kit (Applied Biosystems,

Carlsbad, CA). The cDNA was the source of input for quantitative

PCR, using a Step One Plus Real-Time PCR Instrument and

SYBR Green reagents (Applied Biosystems, Carlsbad, CA). The

relative expression plot was constructed using concentration values

that were normalized to corresponding tubulin concentrations.

Accession numbers
The whole exome sequence data is available online (The

National Database for Autism Research (NDAR) Collection ID:

NDARCOL0001918).

Supporting Information

Figure S1 Genetic relatedness. (A) IBS2*_ratio values versus

percent of informative SNPs are plotted for all parental pairs with

available genotype data from the AGRE collection (red +).

Parental pairs from the 16 families where probands were

sequenced are indicated (black x). Family identifiers are indicated

for some of the 16 families. The majority of these families

(AU0708, AU1328, AU0399, AU0222, AU0371, AU0352,

AU0005, AU1252, AU1019, AU1196, AU0812) cluster around

the average compared to all parental pairs, while some (AU1353,

AU0625, AU1388, AU0753) had higher IBS2*_ratio values

(particularly AU0753), indicating closer relatedness, and one

family had a lower IBS2*_ratio value (AU1261). (B) Relationship

of IBS2*_ratio to IBD = 1 (Z1) estimates. Higher Z1 values

indicate closer relatedness.

(TIF)

Figure S2 Pedigrees of the 16 AGRE families. Whole exome

sequencing was performed on patients indicated with an arrow.

Shaded symbols indicate affected individuals.

(TIF)

Figure S3 The rate of validation by Sequenom genotyping

correlated with sequencing depth. Pearson’s correlation = 0.532,

P = 0.001610230, t-test.

(TIF)

Table S1 Whole-exome sequencing performance. Average read

depth and coverage for each exome are presented. The transition-

to-transversion ratios (Ti/Tv) were as expected for coding

sequences.

(DOCX)

Table S2 Summary of the variants detected per proband, before

and after filtration.

(DOCX)

Table S3 List of genes that were excluded as candidate autism

genes. Homozygous variants in these genes were considered

benign either because they were not in ROHs, were prevalent in

control chromosomes, were not expressed in brain, or the genes

are mutated in other disorders. Noncanonical splice site variants

were also excluded. Brain expression information is based on

data from NIMH Transcriptional Atlas of Human Brain

Development.

(DOCX)

Table S4 Summary of compound heterozygous variants per

proband, before and after filtration. For each proband, variants

that are candidates for being compound heterozygotes were

validated. Parental genotypes were used for segregation analysis to

determine which variants are true compound heterozygotes.

(DOCX)

Table S5 Candidate autism genes that contain compound

heterozygous variants.

(DOCX)

Table S6 Hemizygous variants on the X chromosome.

(DOCX)
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