
Rare genetic causes of lissencephaly may 
implicate microtubule-based transport in the 
pathogenesis of cortical dysplasias
Judy S. Liu,1 Christian R. Schubert,2 and Christopher A. Walsh2,*

Disruption of early neural development can cause severe forms of mental retardation and 
epilepsy, associated with defects in cortical structure. Lissencephaly is a disorder resulting 
from abnormal neuronal migration. Of the six causative genes for classical lissencephaly, 
three, LIS1, DCX, and TUBA1A encode for microtubule-related proteins, indicating the 
importance of this pathway for neuronal migration (Table 1). The lissencephaly 1 (LIS1) 
protein is an adaptor for dynein, a microtubule motor protein 1. Doublecortin (DCX ) 
encodes a microtubule-associated protein (MAP).2, 3 Finally, tubulin α1a (TUBA1A) is a 
gene that encodes an alpha tubulin subunit that is enriched during brain development.4

These lissencephalic syndromes clinically all share a widespread disruption of lamination 
in the cerebral cortex (Figure 1). Since all three genes appear to regulate microtubule-
based transport, their functional relation and regulation during development is an area of 
active investigation with implications that may be significant for a wider cohort of 
patients with focal cortical dysplasias. Cortical dysplasias are a common cause of 
refractory epilepsy and share some of the same histological features of lissencephaly, 
including the dyslamination and abnormal neuronal morphology.5 Disruption of 
microtubule-based pathways may lead to cortical dysplasias and the causative genes for 
lissencephaly are a starting point for further investigation.
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Figure 1. MRI of lissencephaly caused by microtubule pathway genes. High axial magnetic resonance 
images of lissencephaly (LIS) associated with mutations in microtubule related genes. Arrowheads on the 
axial images mark the most severely involved brain regions. (A) Classic LIS, with posterior more severe than 
anterior (p > a) gradient associated with an intragenic mutation of LIS1. (B) Severe classic LIS due to 
deletion 17p13.3 that results in loss of LIS1, YWHAE, and all of the intervening genes in a child with Miller-
Dieker syndrome. (C) Classic LIS with a p > a gradient caused by an intragenic mutation of TUBA1A. (D) 
Moderate severity lissencephaly with cerebellar hypoplasia (LCH) with complete agenesis of the corpus 
callosum, large dysplastic midbrain and tectum, and severe cerebellar hypoplasia associated with another 
intragenic mutation of TUBA1A. (E) Classic LIS with anterior more severe than posterior (a > p) gradient 
caused by an intragenic mutation of DCX. Adapted from Epilepsia 51: Dobyns, WB. The clinical patterns 
and molecular genetics of lissencephaly and subcortical band heterotopia, 5-9, Copyright (2010), with 
permission from Wiley. Panel F shows the MRI of a 15-year-old girl with a severe subcortical band 
heterotopia due to a DCX mutation. Reprinted from Neurobiology of Disease, 38(2): Guerrini R, Parrini E, 
Neuronal migration disorders, 154-66, Copyright (2010), with permission from Elsevier.
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Table 1. Lissencephaly genetics.

Mode of inheritance Gene Locus Type Pathway defect

X-linked or autosomal dominant:

a. X-linked lissencephaly with 
abnormal genitalia

ARX Xp22.1 Type 1 Transcriptional regulation

b. Isolated lissencephaly or 
subcortical band heterotopia

DCX Xq22.3–q23 Type 1 MT-based transport

TUBA1A 12q13.12 Type 1 MT-based transport

LIS1 17p13.3 Type 1 MT-based transport

c. Miller-Dieker syndrome LIS1 + YWHAE 17p13.3 Type 1 MT-based transport

Autosomal recessive:

d. Lissencephaly with cerebellar 
hypoplasia group b

RELN 7q22.1 Type 1 Signaling

VLDLR 9p24.2 Type 1 Signaling

e. Cobblestone lissencephaly

Fukuyama congenital muscular 
dystrophy or Walker-Warburg 
syndrome

FCMD 9q31.2 Type 2 Matrix protein glycosylation

Muscle-eye-brain disease or Walker 
Warburg syndrome

FKRP 19q13.32 Type 2 Matrix protein glycosylation

POMT1 9q34.13 Type 2 Matrix protein glycosylation

POMT2 14q24.3 Type 2 Matrix protein glycosylation

Muscle-eye-brain disease LARGE 22q12.3 Type 2 Matrix protein glycosylation

POMGnT1 1p34.1 Type 2 Matrix protein glycosylation

INTRODUCTION
Normal cognitive function is dependent on proper brain development, including the 
coordination of multiple steps of neuronal development throughout gestation and 
beyond. Disruption in the early steps of neuronal development, including neuronal 
migration, can result in severe cognitive deficits and epilepsy. In the cortex, subset of 
neurons may be differentially affected, including excitatory pyramidal neurons that 
migrate radially from the ventricular zone, and inhibitory neurons that migrate 
tangentially from the lateral and medial ganglionic eminences (Figure 2A and B). As a 
consequence, the normal lamination of the neurons in the cortex may be altered, leading 
to a failure of normal circuit formation and/or the establishment of abnormal circuits 
leading to cognitive dysfunction and epilepsy (Figure 2C).

The phenotypic characteristics of brain malformations can be correlated with defects at 
certain stages in development. Cortical development is dependent on the proliferation of 
neural progenitors. When numbers of neural progenitors are reduced, the result may be a 
brain with microcephaly (“small brain”) that is otherwise normal in structure. 
Microcephaly can be caused by a variety of environmental factors including infection [e.g. 

Genetics of lissencephaly implicates microtubule-based transport defects in cortical 
displasias

1153

A
uthor M

anuscrip
t

A
uthor M

anuscrip
t

A
uthor M

anuscrip
t



Figure 2. Neuronal migration. (A, B) Cortical interneurons derived from the ventral telencephalon and 
reach their final locations by migrating through specific phases. (A) Origin of interneurons in the ventral 
telencephalon. Most cortical interneurons are generated in the medial ganglionic eminence (MGE) of the 
ventral telencephalon and migrate across the corticostriatal junction (broken line) to enter the dorsal 
telencephalon. (B) Phases of interneuron migration within the dorsal telencephalon. Cortical interneurons 
arising in the ventral telencephalon migrate tangentially in the cortex, and then change direction to enter 
the cortical plate (CP) by following a radial or an oblique path. The broken line indicates that some 
interneurons have been observed to descend radially into the CP and others to continue radially to deeper 
lamina. Abbreviations: IZ, intermediate zone; LGE, lateral ganglionic eminence; LV, lateral ventricle; MZ, 
marginal zone; SVZ subventricular zone; VZ, ventricular zone. (C) Cortical pyramidal neurons undergo 
distinct phases of locomotion migration. Phase one involves radial movement of pyramidal neurons (dark 
green) from the site of origin at the ventricular surface to the subventricular zone (SVZ). In phase two, cells 
become multipolar and pause their migration in the lower intermediate zone (IZ) and subventricular zone 
(SVZ). Some neurons undergo phase three, which is characterized by retrograde motion toward the 
ventricle. Phase four is the final radial migration to the cortical plate (CP), guided by radial glial fibers. 
Radial glia (light green) remain mitotic, undergo interkinetic nuclear migration, and generate additional 
daughter cells (grey). Abbreviations: MZ, marginal zone; R, radial glial cell; VZ, ventricular zone. (D) 
Migratory patterns of interneurons and pyramidal neurons converge in the dorsal cortex. This scheme 
depicts the apparent convergence of the migratory patterns of interneurons (red) and pyramidal cell 
movements (dark green) in the cortex. Subsets of both cell types display ventricle-directed migration 
followed by radial movement to the cortical plate (CP). Interneurons might migrate radially along 
unrelated, adjacent radial glial cells (grey) to reach the cortical plate. Abbreviations: IZ, intermediate zone; 
MZ, marginal zone; R, radial glial cell; SVZ, subventricular zone; VZ, ventricular zone. Reprinted from 
Trends in Neurosciences, 27(7), Arnold R. Kriegstein and Stephen C. Noctor, “Patterns of neuronal migration 
in the embryonic cortex”, Pages 392–399, Copyright (2004), with permission from Elsevier.
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TOxoplasmosis, Rubella, Cytomegalovirus, HErpes simplex, Syphilis (TORCHES)] or 
toxins,(e.g. alcohol)6, 7. Microcephaly can be genetic, caused by mutations in genes that 
regulate cell division resulting in defects in the expansion of progenitors8. Furthermore, 
defects in genes that are important for multiple stages of development can result in a 
patient with malformation with multiple features. Microcephaly can also occur in 
combination with a migration defect, i.e. microcephaly with pachygyria (Norman Roberts 
syndrome)9, so that the malformation appears to reflect the disruption of function of the 
gene throughout development.

Disruptions in neuronal migration can cause a number of malformations. Lissencephaly 
(“smooth brain”) or pachygyria (“few gyri”) are malformations caused by a disorder of 
neuronal migration. Pachygyria and lissencephaly are often less and more severe 
manifestations of gene mutations causing type 1 lissencephaly including LIS1 and DCX 
mutations. Other variants of lissencephaly that resemble type 1 have subsequently been 
identified including mutations in ARX10, RELN11, VLDLR12 and TUBA1A13 (Table 1).

Type II lissencephaly, also called “cobblestone lissencephaly”, is associated with Walker-
Warburg and Fukuyama muscular dystrophies and is caused by defects in the basement 
membrane that result from mutations in glycosyl transferase enzymes (Table 1). Again, 
mutations in additional genes involved in dystroglycan glycosylation have been observed. 
14 Cobblestone lissencephaly has a similar, but not identical appearance to 
polymicrogyria, which literally means “many small gyri”. This malformation can be 
regional with variants that are perisylvian, or parietal, or predominantly bifrontal. The 
pathophysiology of polymicrogyria is not apparent and may be due to damage of deeper 
layer or early born neurons, resulting in a over folding of later born, or more superficial 
neurons, or may be due to an abnormal expansion of the superficial layers.

Finally, defects in axonal growth and guidance can lead to commonly observed white 
matter abnormalities, such as agenesis of the corpus callosum or enlarged ventricles. 
Interestingly, most causes of lissencephaly (non-cobblestone) are also known to be 
associated with defects in axon outgrowth15, thus implying a role of the causative genes in 
both stages in development and closely relating the molecular pathways regulating both 
neuronal migration and axon outgrowth. In addition, these defects in axonal growth are 
likely associated with abnormal connectivity and may very generally be associated with 
seizure pathogenesis including in patients with lissencephaly.

IMPLICATIONS OF MICROTUBULE ASSEMBLY AND 
MICROTUBULE-BASED TRANSPORT FOR NEURONAL 
DEVELOPMENT
Not only have these specific diseases been modeled and studied, but also basic science has 
informed the understanding of human disease. Neuronal migration has been studied 
extensively in the mouse even prior to identification of causative genes for human 
syndromes. Prior to identification of RELN as a causative gene for lissencephaly, work on 
mouse the reeler mouse identified striking neuronal migration defects. 16 The cdk5 mouse 
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also has similar, but not identical lamination defects including the inverted cortical 
lamination17 and cdk5 is thought to be downstream of reelin signaling. In turn, the cdk5 
protein is known to interact with both DCX and LIS1.1, 18 Thus, it has become apparent 
that the genes identified in mice with neuronal migration defects interact with human 

Figure 3. Neuronal migration signaling pathways. A simplified diagram describing the relationship 
between the known neuronal migration proteins in mouse and human is shown. Protein names encoded by 
causative genes for human lissencephaly are in red. Reelin is an extracellular ligand, which binds among 
other receptors, very low-density lipoprotein receptor (VLDLR). Doublecortin (Dcx) is a microtubule 
binding protein; Lissencephaly1 (Lis1) is an adaptor protein for the minus end motor, dynein and tuba1a is 
a tubulin isomer. Aristaless (Arx) is a transcription factor. Reelin signaling may activate the cdk5/p35 kinase 
via mDAB. Cdk5 regulates Dcx microtubule binding and assembly of the Lis1/dynein complex including 
NDEL1, NDE1, and 14-3-3ɛ. Dcx interacts with microtubules as well as actin via spinophilin and may be a 
mediator of actin/tubulin cross talk.
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Figure 4. Microtubule regulation in neurons. (A, B) Microtubules are non-covalent cytoskeletal polymers 
found in all eukaryotic cells that are involved in mitosis, cell motility, intracellular transport, secretion, the 
maintenance of cell shape and cell polarization. They are polarized structures composed of α- and β-tubulin 
heterodimer subunits assembled into linear protofilaments. A single microtubule is comprised of 10–15 
protofilaments (usually 13 in mammalian cells) that associate laterally to form a 24 nm wide hollow 
cylinder. The head-to-tail association of the heterodimers makes microtubules polar structures, and they 
have different polymerization rates at the two ends. In each protofilament, the heterodimers are oriented 
with their -tubulin monomer pointing towards the faster-growing end (plus end) and their -tubulin 
monomer exposed at the slower-growing end (minus end). The lateral interaction between subunits of 
adjacent protofilaments has been described as a B-type lattice with a seam (long arrow, part A in the figure). 
A third tubulin isoform, γ-tubulin, functions as a template for the correct assembly of microtubules. On 
addition of a new dimer at the plus end, the catalytic domain of α-tubulin contacts the nucleotide 
exchangeable site (E site) of the previous β-subunit and becomes ready for hydrolysis; the plus end generally 
has a minimum GTP cap of one tubulin layer that stabilizes the microtubule structure. When this GTP cap 
is stochastically lost, the protofilaments splay apart and the microtubule rapidly depolymerizes. During or 
soon after polymerization, the tubulin subunits hydrolyze their bound GTP and become non-exchangeable. 
Thus, the microtubule lattice is predominantly composed of GDP–tubulin, with depolymerization being 
characterized by the rapid loss of GDP–tubulin subunits and oligomers from the microtubule plus end. At 
the minus end, contact is made between the E site of the new dimer and the catalytic region of the last 
subunit at the end; therefore, no GTP cap should be present. The properties of microtubules depend on the 
tubulin isoforms they are made up of — there are three α-tubulins (α 1, α 2 and α4) and five β-tubulins (βI, 
βII, βIII, βIVa and βIVb) — and on how they have been altered by various forms of post-translational 
modification, including tyrosination, detyrosination, acetylation, polyglutamylation, polyglycylation, 
phosphorylation and palmitoylation. Except for tubulin tyrosine ligase, the enzyme that adds a tyrosine to 
non-assembled -tubulin, most of the modifying enzymes act preferentially on tubulin subunits that are 
already incorporated into microtubules. Post-translational modifications of tubulin subunits mark 
subpopulations of microtubules and selectively affect their functions. Although they are not directly 
involved in determining the dynamic properties of microtubules, post-translational modifications of 
tubulin, such as the sequential tyrosination-detyrosination-acetylation, correlate well with the half-life and 
spatial distribution of microtubules. (C) Axons have tau-bound microtubules of uniform orientation, 
whereas dendrites have microtubule-associated protein 2 (MAP2)-bound microtubules of mixed 
orientation. Dendrites also contain organelles that are not found in axons, such as rough endoplasmic 
reticulum, polyribosomes and Golgi outposts. Reprinted by permission from Macmillan Publishers Ltd: 
Nature Reviews Neuroscience 10, 319–332, copyright (2009).
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lissencephaly proteins, including the microtubule related proteins, as well to define a 
neuronal migration signaling pathway (Figure 3).

A key quesion is why the microtubule pathway is important and specific for neuronal 
migration. During development of pyramidal neurons, newly born neuroblasts undergo 
changes in morphology that correspond to different stages in neuronal migration (Figure 
2B)19. The newly born neuroblast in the ventricular zone (VZ) passes into the 
subventricular zone (SVZ), where it can divide further into additional neurons or 
alternatively enter into the intermediate zone (IZ). In the IZ, the neuroblast assumes a 
multipolar morphology, but as it migrates into the cortical plate, the neuron becomes 
bipolar with a leading process that eventually becomes the dendrite, and a trailing process 
that will become the axon (Figure 2B). Transport of organelles and polarization of 
trafficking underlies many of these changes, and since cytoskeletal dynamics and 
transport regulate cell shape and structure, these pathways are critical for correct 
neuronal migration. Studies aimed at identifying and characterizing causative genes for 
neuronal migration disorders have emphasized the importance of microtubule function in 
human neural development (Table 1). LIS1, DCX, and TUBA1A encode proteins which 
are related to microtubule function and microtubule-based transport. The LIS1 protein is 
a part of the dynein complex, a microtubule motor protein1. DCX encodes a MAP that 
has a role for regulating vesicle transport in developing neurites 20. Finally, TUBA1A is a 
gene that encodes an α tubulin subunit that is enriched during brain development 4. The 
other genes, ARX, RELN, and VLDLR encode for a transcription factor and the ligand and 
receptor of very low-density lipoprotein receptor system, respectively, that may define 
upstream or downstream events regulating neuronal migration (Figure 3).

From these studies, it appears evident that the basic biology of microtubules and 
microtubule-based functions, including transport, is extremely important for proper 
neuronal development, such as neuronal migration (Figure 4). Microtubules are hollow, 
tube-shaped polymers that are assembled through polarized polymerization of tubulin 
heterodimers that are comprised of a variety α- and β-tubulin isoforms. Tubulin subunits 
α and β are encoded by a family of genes that are structurally similar but have distinctive 
features important for specific cellular functions. TUBA1A is highly expressed in the 
nervous system during development and is a causative gene for lissencephaly13. Other 
tubulin genes are causative for different human syndromes including Tubulin β3(TUBB3) 
which is an axonal-specific tubulin which causes a syndrome- congenital fibrosis of the 
extraocular muscles (CFEOM3) that is also associated with cognitive defects and a 
neuropathy21.

Microtubule assembly is dependent on GTP, which binds to the soluble tubulin 
heterodimers and, upon hydrolysis, induces a conformational change that favors the 
polarized polymerization and elongation of the microtubule. Once assembled, however, 
microtubules are by no means static structures; not only can they be depolymerized, but 
they are moreover dynamically and developmentally tightly regulated so that their 
structure, polarization, and function is fine-tuned for the specific requirements of the cell. 
Some TUBA1A mutations block GTP binding preventing polymerization.13
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In neurons, as in any other cell type, microtubule polarization results in very defined so-
called ‘plus’ and ‘minus’ ends, with elongation occurring exclusively at the ‘plus’ end. In 
axons, the ‘minus’ ends are usually oriented towards the cell body, whereas their 
elongating ‘plus’ ends project towards the distal regions of the axon. In contrast, in 
dendrites, the polarity of microtubules is mixed, and the structural differences of 
microtubules in axons and dendrites likely reflect specific functional differences.22 

Microtubules in axons and dendrites can also be distinguished through their interacting 
proteins. Microtubule associated proteins are specific for axons or dendrites and are often 
bound to microtubules in gradients along neural processes.23 MAPs serve several 
functions. MAP binding confers structural stability to microtubules and they can also 
facilitate transport targeting and specificity by either blocking or enhancing motor 
interaction. Most MAPs compete with motors for binding sites on tubulin and thus are 
negative regulators of motor transport. DCX, however, does not competitively inhibit 
motor binding.24, 25 Moreover, DCX is a MAP that is regulated by phosphorylation by 
CDK5 and binds microtubules in a signal dependent manner.18 Our data has shown that 
DCX facilitates binding of some motors to microtubules. Likewise, post- translational 
modifications of tubulin including acetylation and polyglutamylation, respectively can 
also confer stability and enhance motor function on microtubules.26, 27 And other 
modifications, such as tyrosination interfere with motor function on microtubules.27

Thus polarity, post translational modification, and MAP binding of microtubules is 
important for transport functions, but the actual transport is mediated by individual 
microtubule-based motors.28 Motors are either directed toward the ‘plus’ or ‘minus’ ends 
of microtubules. For example, kinesin motors transport vesicles and organelles towards 
the ‘plus’ ends of microtubules, and the single dynein motor transports cargo toward the 
minus end of the microtubule. In the axon this means that kinesins transport cargoes 
away from the cell body to distal parts of the axon and dynein mediates transport back 
toward the cell body. While there is only one ‘minus’ end motor, dynein, there are 45 
kinesins that transport cargo toward the ‘plus’ end of the microtubule. Thus, achieving 
cargo identification and coupling for the minus end motor, dynein, is considerably more 
complex than for the kinesins. The LIS1 protein actually is associated with dynein, the 
minus end motor and is important as a regulator of dynein force generation.29

Thus, mutations in genes that have a major role in microtubule assembly and 
microtubule-based transport, including LIS1, DCX and TUBA1A, can cause defects in 
neuronal migration as well as axon and dendrite outgrowth. In this chapter, describing 
three specific examples, we illustrate how rare genetic causes of lissencephaly may 
implicate microtubule-based transport in the pathogenesis of cortical dysplasias.

LIS1 IS THE CAUSATIVE GENE ASSOCIATED WITH MILLER-
DIEKER LISSENCEPHALY SYNDROME
Haploinsufficiency of LIS1 (also known as platelet-activating factor acetyl-hydrolase) is 
known to cause classical lissencephaly, either in isolation (Figure 1A) or as a part of the 
Miller-Dieker syndrome of 17p13.3 deletion30 (Figure 1B). Miller-Dieker syndrome also 
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includes facial dysmorphology, caused by haploinsufficiency of the other genes deleted in 
the interval. YWHAE encodes the protein 14-3-3ɛ which is a modifier of Lis1, 31, 32 

Patients with LIS1 mutations alone, have lissencephaly, but are often found to have 
hypoplasia of the corpus callosum as well as enlarged ventricles, suggesting a role for LIS1 
in neuronal migration as well as axon formation33. Supporting evidence is provided by 
the expression pattern of LIS1, which is enriched in neuronal progenitor cells in early 
development. Moreover, expression of LIS1 in later stages of development supports a 
wider role of LIS1 function outside of neuronal migration.

Functional characterization of LIS1 has been facilitated by the creation and 
characterization of an animal model. As predicted by the human genetics, 
haploinsufficiency of Lis1 results in structural defects in the brain including 
dyslamination in the hippocampi.34 Homozygosity of the mutation is lethal in early 
embyrogenesis.35 In addition to having radial migration defects, tangential migration of 
interneurons is also impaired.36 However, most striking were the apparent defects in 
neurogenesis that were not emphasized in the initial clinical description of patients. In the 
mouse model, Lis1 was found to be critical for expansion of the neuronal progenitor pool 
through regulating symmetric cell division. Decreased Lis1 is correlated with abnormal 
spindle pole orientation a marker for the type of cell division- asymmetric to generate a 
post mitotic neuron or symmetric to generate two progenitors which can divide further.37

Mouse genetics and molecular biology has allowed the identification and characterization 
of proteins interacting with Lis1, most importantly dynein and Ndel1 and Nde1. Lis1 has 
also been found to interact with dynactin, another member of the dynein complex, and 
the plus-end microtubule binding protein CLIP-170 that may mediate the assembly of the 
complex.38 These proteins have multiple functions during neuronal migration, including 
nuclear and centrosomal positioning, as well as neurite outgrowth.39 It is unknown, 
however, if dynein transport in each of these contexts functions similarly and likely the 
complexity of the dynein complex including Lis1 facilitates specificity of function. Given 
its role as the single motor protein responsible for ‘minus’-end microtubule transport, it is 
more likely that defects associated with Lis1-dynein transport are due to specific defects 
with dynein cargo load. For example, neurite outgrowth problems may be due to defects 
in retrograde signaling, and neuronal migration and neurogenesis problems may result 
from disruption of nucleokinesis.40, 41

Molecular studies have demonstrated a specific role for LIS1 in the regulation of dynein 
activity: LIS1 and NDE1 binds to dynein to enhance microtubule binding and prolong 
force production of the motor protein.29 As a consequence, LIS1 has been shown to 
mediate dynein transport of relatively large and heavy cargos, such as the nucleus, while 
other small vesicular cargoes appear to be unaffected. Unfortunately, other aspects of LIS1 
function, including its reported interaction with another lissencephaly gene, DCX, as well 
as its regulation by developmentally important kinases, that may explain aspects of the 
LIS1 phenotype, including the seizures, remain uncharacterized to date.
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DCX MUTATIONS CAUSE BOTH X-LINKED LISSENCEPHALY 
AND SUBCORTICAL BAND HETEROTOPIA
DCX, or doublecortin, is one of two genes that cause X-linked lissencephaly in affected 
boys42, 43(Table 1 and Figure 1E). Women with DCX mutations classically have a 
migration disorder called subcortical band heterotopia (Figure 1F). X-inactivation to 
achieve gene dosage compensation in females with DCX mutations results in cellular 
mosaicism: two populations of neurons occur with either the mutant gene or with the 
normal gene. Affected, mosaic females can have a range of neurodevelopmental 
phenotypes, including subcortical band heterotopia, a disorder where DCX deficient 
neurons arrest before reaching the cortical plate to form abnormal islands within the 
white matter with abnormal axons tracts, rather than frank lissencephaly.44 In addition, 
women with DCX mutations can exhibit a range of milder phenotypes, including non-
syndromic mental retardation or cryptogenic epilepsy without an overt neuronal 
heterotopia.45 The degree of dysfunction and severity of phenotype is thought to be due to 
the skewing of X-inactivation of the X chromosome with the defective DCX.

The genetic mouse model of Dcx mutations significantly improved our understanding of 
the brain phenotype in the human condition. While the mutant mouse with a targeted 
deletion of Dcx does not have an overt cortical migration defect and is more mildly 
affected46, it has multiple other defects that have led to a closer examination of the human 
phenotype. For example, the Dcx mutant mouse exhibits disruption of lamination in the 
hippocampi and white matter defects.46 These defects were subsequently also described in 
humans with DCX mutations47. In addition, defects in migration and morphology of 
GABAergic interneurons have also been described, which may be a common factor in the 
pathogenesis of epilepsy in these disorders.

Interestingly, the female Dcx mutant mouse with a single undamaged copy of Dcx appears 
to be phenotypically normal.20 Instead, short hairpin RNA interference (shRNAi) has 
been used in rats to model the formation and physiology of the subcortical band 
heterotopia.48 However, it has to be noted that the same experiment does not produce the 
heterotopia in the mouse. The shRNAi is introduced by microinjection into the lateral 
ventricle of an embryonic rat and by applying an electrical pulse, the interference 
construct is transfected into neuronal progenitors that are adjacent to the ventricle, where 
the RNAi prevents the expression of Dcx during the migratory phase of neuronal 
development. Moreover, electrophysiological studies of these rats have shown a decrease 
of GABA-ergic tone in the cortex overlying the subcortical band, which is populated with 
not only Dcx deficient excitatory neurons, but also with normal GABA-ergic neurons.49 

These appear to be misdirected and unable to migrate to their normal positions in the 
cortex. Finally, this model has also been used to show that re-expression of Dcx in the 
subcortical band neurons during adulthood initiated migration of these neurons into the 
cortex and further decreased the seizure threshold of the animals.

From animal models, it has become clear that Dcx is a member of family of structurally 
related functionally redundant proteins that have a role in seizure pathogenesis. In 
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addition to the single mutant of Dcx, double mutants of Dcx and Dclk120, 50 and Dclk251 

have been published showing much more severe structural effects in the double mutants 
than single mutants and proving overlapping roles for Dcx family members in 
development and beyond. All of these animals have been shown to have seizures (Deuel, 
Walsh, Nobles, unpublished data) and the seizures in the Dcx-/y; Dclk2-/- mutant are 
thought to emanate from the hippocampus.51 It is unknown in humans whether seizures 
are related to the severe temporal lobe dyslamination and how much the disruption of the 
microcircuitry in the neocortex is contributes to seizure propagation in humans. Epilepsy 
surgery has not been used on lissencephaly patients, however patients with subcortical 
band heterotopia have generally not had favorable outcomes after temporal lobectomy.52

The molecular role of DCX can be understood by its interaction with other proteins. 
Mutations in the tandem microtubule binding domains DCX have been shown to 
abrogate microtubule binding and cause the neuronal migration defects.53 In addition to 
microtubules, DCX is known to interact with spinophilin/neurabin II, an actin-binding 
protein, suggesting a role in actin/microtubule crosstalk, and human mutations disrupting 
this interaction also cause defects in neuronal migration.54 Moreover, DCX has been 
shown to interact with the μ subunit of the clathrin adaptor complex55, which is involved 
in vesicle biogenesis from the Golgi complex and in endocytosis as part of clathrin-coated 
pits. Finally, we have identified a role for Dcx in regulating microtubule-based 
transport.20

MUTATIONS IN αTUBULIN CAUSES LISSENCEPHALY
Heterozygous missense mutations in TUBA1A, coding for an α-tubulin isoform that is 
highly expressed in developing neurons, cause a spectrum of cortical malformations that 
include lissencephaly and pachygyria. Affected individuals may further be microcephalic 
and have cortical malformations that range from agyria and posterior pachygyria in 
severe cases to perisylvian predominant pachygyria in the more common and less severe 
forms.56 Findings from autopsies reveal abnormal cortical layering, hypoplastic and 
disorganized hippocampi, and clusters of heterotopic neurons neurons interspersed 
within the white matter.

The TUBA1A phenotype (Figure 1C and D) is somewhat distinct from LIS1 and DCX, 
however. Patients with TUBA1A mutations have additional defects that are less commonly 
associated with LIS1 and DCX mutations, including cerebellar and brainstem hypoplasia, 
as well as hypoplasia of the anterior limb of the internal capsule. This long tract finding 
appears to be extremely specific to TUBA1A mutations, and is associated with 
dysmorphic basal ganglia that are lacking a clear separation between the caudate and 
putamen.56 As with LIS1 and DCX mutations, hypoplastic and disorganized white matter 
tracts suggest further disruption in axon growth and guidance beyond simply defects in 
cell migration. Thus, the patients usually have severe neurological impairment, including 
mental retardation, spastic diplegia or tetraplegia, facial paralysis, and epilepsy.
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In contrast to DCX and LIS1, TUBA1A mutations have not been extensively modeled in 
mice. However, a mouse with a mutation in the GTP binding site on Tuba1a in mice has 
been described with abnormal hippocampal lamination, but no overt migration disorder 
in the cortex.13 This mouse appears very similar to the Dcx mutant mouse histopathology 
and it is likely that on further examination, other abnormalities will be appreciated.

Mutations in genes that encode different α and β-tubulin isoforms, including TUBB2B, 
TUBA8, and TUBB3, also cause other congenital neurological syndromes. Mutations in 
TUBA8 and TUBB2B cause polymicrogyria with and without ocular hypoplasia, 
respectively.4, 57 These syndromes are associated with developmental delay and with 
seizures. In contrast, mutations in TUBB3 cause a defect in axon guidance; patients 
present with restrictions in eye movements, mild cognitive impairments, spasticity, and 
later polyneuropathy. Radiological findings reveal hypoplastic oculomotor nerves, 
dysmorphic basal ganglia with or without internal capsule hypoplasia, and agenesis or 
hypoplasia of the corpus callosum and anterior commissure, but no cortical 
malformations. The TUBB3 syndrome is thus not as severe as the other tubulin mutation 
syndromes in terms of CNS dysfunction, with the effect that these patients rarely have 
seizures.58

Each of the tubulin syndromes described above can result from mutations in tubulin 
isoforms that inhibit the formation of microtubules either by interfering with the levels 
tubulin expression, folding, or function (i.e. GTP binding), yet some pathogenic 
mutations do not appear to have any discernable effects on these specific tubulin 
properties. It is thought, however, that these mutations cause the phenotypic defects by 
disrupting the binding of other proteins to microtubules, including motor proteins such as 
kinesins and dynein and/or microtubule-associated proteins such as DCX. For example, 
the R402H mutation in TUBA1A has been shown to lie directly in the groove where DCX 
is thought to bind to tubulin13 and DCX is implicated in transport of presynaptic vesicles. 
In addition, TUBB3 mutations are known to disrupt the function of another kinesin 
motor protein, KIF21A.58 These findings strongly suggest that the tubulinopathies may be 
best understood in terms of a motor defect59.

MICROTUBULE FUNCTION AND THE PATHOGENESIS OF 
SEIZURES
Defects in neuronal migration of either excitatory or inhibitory neurons result, broadly 
speaking, in abnormal neuronal connectivity and circuit formation, as axons are not be 
able to find their normal post-synaptic targets. Defects in neuronal migration of 
excitatory neurons may result in the abnormal formation of circuits. The dyslamination of 
pyramidal neurons may mean the GABAergic interneurons may not be able to form the 
correct connections. This alone may be enough to tilt the balance in cortical circuitry 
toward hyperexcitability. In fact, the use of RNAi in the rat model to knockdown Dcx 
specifically in pyramidal neurons without affecting GABAergic neurons does result in 
abnormal migration of interneurons to the subcortical band. These animals have been 
shown to have decreased inhibition in the overlying regions of cortex49. However, in 
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animal models with targeted mutations in Lis1 and Dcx, the interneurons are also affected 
since these proteins are expressed in every neuron60, 61. And while interneuron migration 
is not totally normal, the inhibitory interneurons still successfully migrate into the cortex. 
However, it is unknown whether specific subsets of interneurons are preferentially 
affected in either DCX or LIS1 mediated disorders.

In these migration disorders, however, there might be additional specific molecular 
defects in the axons themselves, and microtubule dysfunction in such axons may explain 
the clinical phenotypes observed through disruption of dynein- and kinesin-mediated 
transport processes and their specific cargoes. For example, the LIS1 syndrome may result 
from failure of dynein-mediated nuclear translocation during migration. However, the 
continued absence of retrograde transport in these neurons after the developmental 
window may affect signaling from distal regions of the axons and dendrites. Although the 
specific signaling pathways affected are unknown, they may be pathways that respond 
specifically to neuronal activity such as cdk5, which is both regulated by activity and 
known to interact with Lis1. In comparison, DCX mutations may cause both a failure of 
migration and axon outgrowth through defects in anterograde vesicle transport in 
growing axons and dendrites. In fact, the defect in kinesin-medicated vesicle transport 
observed in DCX mutant neurons may have far-reaching effects, e.g. impairments of 
membrane addition, mislocalization of guidance receptors, and ultimately mislocalization 
of ion channels.

CORTICAL MALFORMATIONS ARE AN IMPORTANT CAUSE 
OF PEDIATRIC EPILEPSY
Genetic causes of brain malformations have a clearly defined etiology and can be studied 
with animal models, yet they are relatively rare. In the pediatric population, however, 
other cortical malformations, especially focal cortical dysplasias (FCD), are the 
underlying cause of a large percentage of first presentation with seizures {reviewed in 62}. 
Epilepsies resulting from cortical malformations are often difficult to control, requiring 
multiple medications and surgeries, and compared to other epilepsy patients, the societal 
cost for such cases is disproportionately greater in terms of both health care spending and 
co-morbidity. However, advances in genetics and neuroimaging have resulted in 
significant improvements in our understanding of these disorders as well as expansion of 
our diagnostic capabilities, and we are poised to develop new treatment options for 
patients suffering from these disorders.

FCD is heterogeneous disorder, which has a wide range of severity by histopathological 
appearance and thus an unknown (or poorly defined) etiology. The severity of FCD is 
graded with and correlated with radiological findings. 63,62 Pathological examination of 
MRI-negative focal epilepsies results in a diagnosis of a mild form of FCD, (Type I FCD) 
in up to half of the patients who go to surgery for resection of a seizure focus64. Type II 
FCD is more severe and makes up most of the cases, which are diagnosed pre-surgically 
by MRI. Thus, FCD appears to encompass a wide range of severity that may reflect 
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multiple etiologies from mild dyslamination to the more severe form with heterotopic 
neurons, abnormal giant neurons, and the presence of balloon glial cells.63

While giant neurons and balloon cells are not found in lissencephaly cases, changes that 
are associated with mild FCD: heterotopic neurons, and abnormal neuronal polarity, are 
reminiscent of histopathology seen in human lissencephaly. Studies on mild forms of 
cortical dysplasias demonstrate cellular defects that are similar to those seen in tissue 
from animal models of Dcx and Lis1 lissencephaly, including the disruption of 
lamination, and multipolar heterotopic neurons. Thus, the same pathways that are 
disrupted in genetic causes of lissencephaly may be important for the pathogenesis of 
cortical dysplasias, and it is reasonable to hypothesize that microtubule dysfunction may 
be a lead cause for cortical dysplasia.

In contrast to milder forms of FCD, severe forms, which are more readily diagnosed by 
imaging, include histopathological features that are also seen in tuberous sclerosis 
complex (TSC).65 Both severe FCD (type II) and TSC have in addition to dyslamination, 
giant neurons and balloon cells (reactive glial cells). Thus, TSC pathway proteins, 
including mTOR, are other possible candidates for FCD pathogenesis. What remains 
unclear is whether mild FCD and severe FCD result from the extent of dysfunction of one 
particular pathway, or if they result from developmental disruption of separate pathways. 
Finally, it is not inconceivable that FCD is a heterogeneous disorder with several different 
causes and that subsets of FCD result from molecular pathway dysfunction in terms of 
severity and other subsets are caused by entirely different pathways. Finally, the pathways 
that cause FCD and lissencephaly, may be related.

Recent success in manipulation of these candidate pathways in FCD including highlight 
the importance of understanding pathogenesis of FCD. Manipulation of these pathways 
have been shown to alter epilepsy in non FCD models: Rapamycin an mTOR inhibitor has 
been successfully used for treating seizures in animal models of TSC.66 In addition, a 
recent study has shown that re-expression of a lissencephaly gene, DCX, in heterotopic 
neurons of adult animals resulted in a decrease in the size of the heterotopia and a 
reduction in seizure threshold.67 Thus, determining whether these pathways are involved 
in the pathogenesis of the different types of FCD may result in the development of 1) an 
appropriate animal model and/or 2) targeting of seizure therapy. With the successful 
therapeutic intervention in the animal model, the possibility of helping patients with 
disorders stemming from disruption of the same molecular pathway becomes a real 
possibility and it is critical to adequately characterize FCD to know whether this can be 
realized.

This characterization of human FCD will be extremely challenging with obstacles 
including sample collection, as well as the heterogeneity in patient population in terms of 
age, gender, treatment and genetic background. In addition, many of the candidate 
proteins are developmentally expressed, and human samples obtained are typically 
outside of the window of expression. However, the availability of animal models in all of 
the stages of development may make detailed phenotypic assessment sand correlation of 
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molecular pathway defects in human FCD more feasible. As discussed above, mouse 
models of neuronal migration have been extensively characterized and can be compared 
with human FCD, as well as the animal model for TSC. Thus, characterization of FCD can 
be conducted with reference to the animal models of candidate molecular pathways. 
Furthermore, a detailed characterization of the microcircuitry in both FCD and 
lissencephaly models may yield meaningful comparisons for understanding the 
development of hyperexcitability.
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