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SUMMARY

Somatic mutations occur during brain development
and are increasingly implicated as a cause of neuro-
genetic disease. However, the patterns in which
somatic mutations distribute in the human brain are
unknown. We used high-coverage whole-genome
sequencing of single neurons from a normal indi-
vidual to identify spontaneous somatic mutations
as clonal marks to track cell lineages in human
brain. Somatic mutation analyses in >30 locations
throughout the nervous system identified multiple
lineages and sublineages of cells marked by different
LINE-1 (L1) retrotransposition events and subse-
quent mutation of poly-A microsatellites within L1.
One clone contained thousands of cells limited to
the left middle frontal gyrus, whereas a second
distinct clone contained millions of cells distributed
over the entire left hemisphere. These patternsmirror
known somatic mutation disorders of brain develop-
ment and suggest that focally distributed mutations
are also prevalent in normal brains. Single-cell anal-
ysis of somatic mutation enables tracing of cell line-
age clones in human brain.

INTRODUCTION

Somatic mutations, occurring during or after the mitotic cell divi-

sions that generate the body, cause not only cancer, but also

diverse neurologic diseases, including cortical malformations,

epilepsy, intellectual disability, and neurodegeneration (Poduri

et al., 2013). Somatic mutations also remain an important, unex-

plored possible etiology of other neuropsychiatric diseases (In-

sel, 2014). In contrast to inherited mutations, somatic mutations

cause disease depending not only on their effects on gene func-
tion, but also on the time, place, and cell lineage during develop-

ment at which they occur (Frank, 2010). Therefore, pathogenic

somatic mutations pose a challenge because of the variety of

ways their effects are shaped by normal development. System-

atic tracing of the patterns of distribution of clonally related cells

in human brain has not been possible, relying instead on extrap-

olation from animal models and in vitro studies (Clowry et al.,

2010). Knowledge of these patterns, in conjunction with system-

atic measurement of somatic mutation rates in the brain (Evrony

et al., 2012; McConnell et al., 2013; Cai et al., 2014), is crucial to

understand how somatic mutations might cause disease by im-

pairing circuit function and their potential role in the large unex-

plained burden of neuropsychiatric disease.

Somatic mutations also present an opportunity to study the

developmental processes that create the human brain. Marking

all progeny of a specific cell or population of cells is a central tool

of developmental biology, revealing patterns of progenitor prolifer-

ation,migration, and differentiation (Kretzschmar andWatt, 2012).

Existing tools to mark cell lineages, such as retroviral tracers and

genetic and fluorescent markers, have uncovered key aspects of

brain development in model organisms (Franco and Müller, 2013;

Marı́n and Müller, 2014) but are invasive and cannot be applied

to human tissue in vivo. Somaticmutations, however, occur spon-

taneously and possess the key features required of lineage

markers: (a) they are inherited by all descendant cells, and (b)

theyare not transferredbetweencells. Retrotransposonmutations

inparticularhavebeenshown tooccur inmousebrain invivo (Muo-

tri et al., 2005) and human neuronal progenitors in vitro (Coufal

et al., 2009) and are detectable in human brain (Baillie et al.,

2011; Evrony et al., 2012; Reilly et al., 2013). Retrotransposons

also have unique sequence structures that make each insertion

differentiable from other insertions (Goodier and Kazazian, 2008),

enabling detection even at low mosaicism and suggesting they

could be used as noninvasive cell lineagemarkers in human brain.

Here we show that single-neuron, high-coverage whole-

genome sequencing (WGS), along with profiling of all active ret-

rotransposon families and further single-molecule somatic
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Figure 1. Single-Neuron WGS Genome Coverage

(A) Percentage of genome covered at specified read depths for all samples in this study.

(B) Representative genome-wide coverage plot of single neuron #18 in�500 kb bins, with enlargement of chromosome 3 in which L1#2 was identified (Figure 2).

See Figure S5 for plots of all samples. Right panel zoom of a 5 kb region (chr3: 147,605,344–147,610,345, hg19) shows single-neuron WGS simultaneous

detection of three types of germline mutations, all concordant with 100-neuron and bulk samples: single nucleotide variants (SNVs, colored bars represent ratios

of allele reads), a deletion (578 bp AluY and additional flanking sequence), and an SVA retrotransposon insertion. All mutations have been previously identified in

public polymorphism databases.

(C) Average read depth of retrotransposon insertions annotated in the human genome reference and their 500 bp flanks, relative to the genome-wide average read

depth. Relative read depths correlate with average GC content of each retrotransposon family (L1Hs: 42%; AluY: 54%; SVA: 63% GC content), due to GC

amplification bias of MDA (see Table S2 and Note S1).

See also Figures S1–S9 and Tables S1 and S2.
mutation analyses, can identify and leverage somatic mutations

as tags to identify unexpected spatial patterns of cell lineages in

the human brain. Our data show a proof of principle that clonal

patterns defined by somatic retroelement insertions and muta-

tions of associated repeat sequences delineate patterns of line-

age resembling those defined in animal models while enabling

study of human-specific features, and suggest that deep anal-

ysis of the gamut of somatic mutations will allow a systematic

reconstruction of key features of lineage patterns in the human

brain.

RESULTS

High-Coverage Whole-Genome Sequencing of Single
Neuronal Genomes
We selected 16 single neuronal genomes for high-coverage

WGS from a population of large neuronal nuclei from the left mid-

dle frontal gyrus of the dorsolateral prefrontal cortex of a neuro-
50 Neuron 85, 49–59, January 7, 2015 ª2015 Elsevier Inc.
logically normal individual (UMB1465). These genomes were

amplified by multiple displacement amplification (MDA) (Dean

et al., 2002) as part of a prior targeted study of LINE-1 (L1) retro-

transposition (Evrony et al., 2012). WGS at a genome-wide

average read depth of 423 achieved coverage of 98% ± 0.5%

of the genome at R13 and 81% ± 2% at R103 read depth

on average (±SD) across all single neurons (Figures 1A and 1B;

Tables S1 and S2, available online), consistent with prior esti-

mates of MDA locus dropout measured by targeted genotyping

(Evrony et al., 2012) and WGS of MDA-amplified single cancer

cells (Hou et al., 2012). Single neurons showed highly consistent

sequencing quality, genome read alignment, and genome cover-

age (Figure S1; Tables S1 and S2). Sequencing and alignment

metrics were generally similar to WGS of unamplified bulk DNA

from cortex and heart, although as seen in prior single-cell

studies (Evrony et al., 2012; Hou et al., 2012; Voet et al., 2013),

MDA samples showed systematic andmostly correctable biases

in genome coverage due to GC-sequence content (Figures 1C



andS2–S5;TableS2;NoteS1).Compared tosinglecellsamplified

by the MALBAC method in a prior study (Zong et al., 2012), MDA

achieves improved overall genome coverage, as well as more

even amplification at smaller scales (<50 kb) necessary for reliable

detection of sequence variants such as retrotransposon inser-

tions (Figures S1, S6, and S7; Table S2; Note S1). On the other

hand, MALBAC shows more even and reproducible coverage at

larger scales (Figures S6 andS7; Note S1), consistent with its bet-

ter performance in detecting large copy-number variants (Hou

et al., 2013). Our high-coverage single-cell WGS dataset, the

most extensive to date, provided an opportunity for additional

detailed analyses of single-cell MDA performance, including in-

depth investigation of genome coverage, GC-sequence bias,

comparisons to other publicly available single-cell datasets, and

MDA chimeras (stochastic false positive structural variants

created during amplification). These comprehensive analyses

are presented in Note S1 (see also Figures S1–S9; Tables S1

andS2) to aid future single-cell genomics research in understand-

ing mechanisms of single-cell genome amplification and devel-

oping improvedamplificationmethods (BlaineyandQuake, 2014).

Somatic Retrotransposon Insertion Analysis with the
Single-Cell Transposable Element Analyzer
We searched for somatic retrotransposon insertions deriving

from all major active retrotransposon families (AluY, L1Hs, and

SVA) using scTea (single-cell transposable element analyzer), a

pipeline based on the Teamethod originally developed for detec-

tion of somatic insertions in tumor samples (Lee et al., 2012b).

scTea incorporates significant additional features and improve-

ments for single-cell analysis, including identification of true in-

sertions with high sensitivity and specificity (Figures 2A, 2B,

S10, and S11; see Supplemental Experimental Procedures

for details). scTea achieves sensitivity of 95%, 96%, and 86%

in detection of AluY, L1Hs, and SVA insertions, respectively,

that are absent from the human genome reference (nonreference

insertions) in simulations generated from the only Sanger-

sequenced diploid genome (HuRef) (Figure S10C). Specificity

of AluY, L1Hs, and SVA bulk DNA insertion calls estimated by

PCR and Sanger sequencing validation of 80 randomly selected

insertion candidates from bulk DNAWGS of individual 1465 was

97%, 100%, and 100%, respectively (Table S3). In single-neuron

genomes, scTea detected an average of 805 AluY, 131 L1Hs,

and 17 SVA germline nonreference insertions (i.e., insertions

also found in bulk samples of the individual), of which 708,

117, and 9, on average, were ‘‘known’’ insertions independently

detected by prior population studies of retrotransposon poly-

morphism (Figure 2A). scTea achieved a single-neuron sensitivity

of 74%, 79%, and 62% for AluY, L1Hs, and SVA, respectively,

using the high-confidence known germline insertions of the indi-

vidual as a reference (Figures S10D and S10E; see Supplemental

Experimental Procedures for details).

Analysis of the 16 single-neuron genomes with scTea identi-

fied 18 somatic insertion candidates (Figure 2B; Table S3). The

four highest-scoring candidates were two L1Hs insertions

(each identified in two neurons: L1#1 in neurons 2 and 77 and

L1#2 in neurons 6 and 18; Figures 2B–2D) andwere the only can-

didates with convincing in silico evidence on manual review of

WGS data (Table S3). Follow-up evaluation of all 18 candidates
by independent PCR assays validated only these four candi-

dates. Remarkably, L1#1 was the same somatic insertion on

chromosome 15 previously identified by targeted L1 insertion

profiling (L1-IP) in the same two neurons (2 and 77) (Evrony

et al., 2012). This represents important validation of L1-IP (Evr-

ony et al., 2012) by an entirely independent sequencing method,

dataset, and analysis pipeline.

Full-length cloning of L1#2 revealed that like L1#1, it showed

all the hallmarks of a bona fide retrotransposition event (target

site duplication [TSD] and poly-A tail), but also showed trunca-

tion, inversion, and a long 30 transduction (614 bp) identifying

the source L1 on chromosome 13 (Figures 2E, 2F, S12A, and

S12B; Table S3). The site of insertion was in an intergenic region

far away from any obvious transcribed gene, strongly suggesting

that this L1 does not alter the function of any nearby gene. Its

long 30 transduction, which occurs infrequently during retro-

transposition (<5% of insertions transduce >500 bp) (Goodier

et al., 2000; Pickeral et al., 2000; Xing et al., 2006), is longer

than the DNA fragments amplified by L1-IP, explaining why the

insertion was not identified by L1-IP. Additional 30-junction
PCR (30 PCR) screening of a large set of single cells from the

individual identified L1#2 in 13 of 587 single cortical neuron ge-

nomes, but not in 59 single caudate neuron genomes or 68

single cerebellar neuron genomes (Figures 2G, S12C, and

S12D). Intriguingly, the source element for L1#2 on chromosome

13 was not active in previous in vitro assays (Brouha et al., 2003),

suggesting that in vivo retrotransposon activity may differ from

in vitro estimates and highlighting how single-cell studies can

reveal in vivo activity of source elements. WGS analysis of single

neurons was consistent with our previous targeted L1-IP (Evrony

et al., 2012) and our prior estimate of low rates of L1 retrotrans-

position in the cerebral cortex (with 12/16 single neurons lacking

validated insertions and two validated insertions each shared by

two clonally related cells), and extends these results to find no

evidence of Alu and SVA retrotransposition in the 16 sequenced

single neurons from this normal individual. These results illus-

trate the advantage of single-cell WGS by its ability to analyze

all retrotransposon families simultaneously and to recover so-

matic insertions that elude targeted sequencing approaches.

Tracing Spatial Distributions of Progenitor Lineages in
Human Brain
A custom droplet digital PCR (ddPCR) assay with single-copy

sensitivity (Figure S13) allowed quantification of the mosaicism

(percentage of cells) and distribution of the two somatic L1s in

unamplified (bulk) DNA extracted from frozen tissues from 32 re-

gions across the left cerebral cortical hemisphere, left caudate,

left cerebellum, and spinal cord (Figure S14; Table S4); the right

hemisphere was formalin-fixed and therefore studied by a

different nested PCR assay (see Supplemental Experimental

Procedures). Remarkably, L1#1 was detected only in five adja-

cent locations in the left middle frontal gyrus of the cortex, span-

ning a region z2 3 1 cm in size and showing an average mosa-

icism of 0.09% (range: 0.04%–0.22%) (Figures 3, S14, and S15;

Table S4). Absolute copy number quantification by ddPCR

further estimated that at least 2,200 cells harbored L1#1 in our

DNA samples, extrapolating to likely no more than 50,000 cells

total in the cortex (see Supplemental Experimental Procedures).
Neuron 85, 49–59, January 7, 2015 ª2015 Elsevier Inc. 51
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Figure 2. Single-Neuron WGS Analysis Identifies Somatic Retrotransposon Insertions

(A) Average number of germline nonreference insertions (i.e., present in either bulk cortex or heart) detected per sample with an scTea-calculated scoreR 9 (see

Supplemental Experimental Procedures for details on score calculation). Error bars, SD. The number of known insertions (reported in public databases and prior

population studies of retrotransposon polymorphism) are shaded in a darker color.

(B) Score distribution of all AluY, L1Hs, and SVA germline known nonreference insertions (upper panel, n = 13,849 insertions) and somatic calls (lower panel, i.e.,

calls absent in bulk heart) detected across all 16 single neurons. Dashed line indicates score threshold R 9 used to call somatic candidates, with bars below

threshold drawn in a lighter color. Note the distribution of known insertions at higher scores compared to somatic calls at lower scores that arise from low-level

MDA chimeras below threshold.

(C) Whole-genome sequencing reads detecting L1#1. Main panel shows fully aligned reads whose pairs aligned to L1, with darker and lighter colors indicating

plus and minus orientations, respectively. Smaller panels on right show partially aligned (breakpoint) reads spanning the insertion breakpoint, detecting the TSD

and poly-A tail. Mismatched bases relative to the human genome reference are colored.

(D) Whole-genome sequencing reads detecting L1#2. A few partially aligned reads distant from the insertion site are chimeras.

(E) Schematic of L1#2 and its source L1.

(F) Full-length PCR validation and cloning of L1#2.

(G) Representative gel from a 30 PCR screen for L1#2 in single neurons.

See also Figures S10–S12 and Table S3.
L1#1 was not detected in nonneuronal cells sorted from the left

middle frontal gyrus, nor in multiple caudate, cerebellum, spinal

cord, right cortex, heart, lung, and liver samples, illustrating the

assay’s specificity and ability to detect ultra-low mosaicism.

The localized spatial distribution and very low mosaicism

strongly suggest that the insertion marked a neocortical progen-

itor of the left middle frontal gyrus giving rise to mostly, if not

exclusively, neurons.

In contrast to L1#1, L1#2 was detected in every sample of

the left cerebral cortex and caudate nucleus tested, though at

very low and highly variable mosaicism (cortex average 0.4%,
52 Neuron 85, 49–59, January 7, 2015 ª2015 Elsevier Inc.
range 0.01%–1.7%) (Figures 3 and S15; Table S4). While it is

not possible to estimate the total number of cells harboring

L1#2 without assaying the entire brain, extrapolation from as-

sayed regions suggests that L1#2’s lineage encompasses

tens to hundreds of millions of cells. L1#2 was also detected

in sorted nonneuronal cells and at extremely low levels in left

cerebellum, but not in formalin-fixed tissue of the right hemi-

sphere, nor in spinal cord, heart, lung, or liver (Figures 3 and

S15; Table S4), suggesting it mobilized considerably earlier in

nervous system development than L1#1 and in a progenitor

for both neurons and glia.
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(A) Representative ddPCR plots of L1#1 and L1#2. L1+ droplets are plotted with larger points for better visualization. Reduced L1 signal in double-positive versus

single-positive droplets is due to relatively higher PCR efficiency of RNaseP amplicons.

(B) Mosaicism levels measured in individual UMB1465, plotted on a representative brain, using logarithmic box plots to indicate level of mosaicism. Empty

rectangles indicate no detection. Blue shading indicates the estimated distribution of L1#1 in the middle frontal gyrus. The 16WGS single neurons were originally

obtained from location D (underlined).

(C) Lucida tracings of cortex sections 2, 3, and 4 in which L1#1 was found, traced from photographs of sections. Dashed lines indicate regions that were not

present in photographs of sections due to sampling prior to this study. Anatomy of these regions was extrapolated based on records of sampled locations,

adjacent sections, photographs of right hemisphere formalin-fixed sections, and atlases of normal brain anatomy. Locations in which L1#1 was detected are

highlighted in blue. See Figure S14 for diagrams of all sampled brain sections.

See also Figures S13–S15 and Table S4.
Poly-A Tails of Somatic Insertions Are Highly Mutable
and Mark Sublineages
30 PCR validation data for L1#1 in neurons 2 and 77 suggested

that the insertion was slightly different in size in each neuron (Fig-

ure 4A), which reflected unexpected secondary mutations in the

poly-A tail of the L1 sequence. The difference in size was initially
surprising, as L1#1 was inherited by both neurons from a single

event in a shared progenitor, as confirmed by identical break-

points, TSD, and transduction sequences in both neurons

(Evrony et al., 2012). Comparison of L1#1’s sequence in the

two neurons revealed that the poly-A tail, which was reverse

transcribed into the genome from the original retrotransposon
Neuron 85, 49–59, January 7, 2015 ª2015 Elsevier Inc. 53
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See also Figures S16–S19 and Table S5.
transcript’s poly-A tail and shown before to be a highly mutable

sequence element (Grandi et al., 2013), was longer in neuron 2

(70 bp) compared to neuron 77 (40 bp) (Figure 4B), fully account-

ing for the difference in insertion size. This suggested that the

poly-A sequence of L1#1 underwent somatic mutation in

descendant cells after the original insertion event. Using a digital

nested 30-junction PCR assay (dnPCR) with near 100% sensi-

tivity and specificity in cloning single copies of L1#1’s poly-A

tail directly from unamplified bulk DNA (Figure S16A), we found
54 Neuron 85, 49–59, January 7, 2015 ª2015 Elsevier Inc.
that the poly-A tail was highly polymorphic (Figure 4C), indicating

that it mutated somatically many times.

Profiling the lengths of many L1#1 poly-A tails (n = 639) from

locations where L1#1 was found revealed striking differences

in poly-A size distributions between locations, including distinct

peaks marking subset lineages of cells, as well as additional

highly variable poly-A tail lengths at lower levels indicating

frequent somatic mutation (Figure 4D; Table S5). Importantly,

dnPCR of control poly-A tails of known lengths (Figure S16B)



and reproducibility of peaks across tissues (Figure S17) shows

that dnPCR reliably measures poly-A tail lengths with precision

up to ±1 bp (see Supplemental Experimental Procedures for de-

tails). Overall, these results suggest that the poly-A tail of L1#1’s

originating retrotransposition event may have been >200 bp long

(Figure 4D; and see Note S2 for further discussion) and that in

subsequent descendant cells, in vivo somatic mutation gener-

ated widely varying poly-A lengths marking distinct subline-

ages— a striking example of nested somatic mutation. More-

over, the distinct distributions of poly-A tails in each location

(Figure 4D) are consistent with migration of a subset of progen-

itors each with a different distribution of poly-A tails.

L1#2’s poly-A tail showed less polymorphism. Only 1 of the 13

single neurons with the L1#2 insertion showed a large difference

in poly-A size (Table S5), and dnPCR profiling of >1,500 poly-A

tails across 12 locations in the cortex, caudate, and cerebellum

showed some variability, though much less than L1#1 (Fig-

ure S17; Table S5). The different poly-A mutation rates of L1#1

and L1#2 may reflect a difference in poly-A size of the original

insertion, regional genomic variability in mutation rates, timing

of the insertion during development, or epigenetic effects on mi-

crosatellite and somatic mutation rates (Kim et al., 2013).

Notably, smaller clonal sets of cells carrying L1#1 with similar

poly-A lengths appear to occupy smaller zones of the middle

frontal gyrus (Figure 4D; Table S5). For example, cells carrying

L1#1marked by poly-A tails 118–120 bp in length (110/639 cells)

were limited to location H of the middle frontal gyrus (104/110 =

95% of cells). Similarly, cells carrying 147–149 bp poly-A tails

(46/639 cells) were found predominantly in location D (42/46 =

91%of cells), with the remaining cells in adjacent locations, while

99–100 bp poly-A tails (13/639 cells) were found predominantly

in location A (12/13 = 92% of cells; 1/13 cells in adjacent location

B). We interpret cells carrying the same poly-A length as subline-

ages, defined by poly-A mutations, that are offspring of the orig-

inal progenitor in which L1#1 inserted. The distribution of these

sublineages suggests that tangential dispersion becomes pro-

gressively restricted in later generations of neocortical progeni-

tor lineages, though even these sublineages show remarkable

intermingling with cells from distinct clonal origins. Larger scale

single-cell analyses of somatic mutations will be necessary to

study the generalizability of these patterns across different pro-

genitor types and anatomic locations.

DISCUSSION

Here, we show how single-neuron WGS and in-depth character-

ization of somaticmutations can reveal spatial patterns of cell lin-

eages in normal human brain. Wewere able to take advantage of

somatic mutations for this purpose by our ability to definitively

validate them and recover their full sequences from single neu-

rons, a level of validation not routinely performed in single-cell

studies. Although here we focused on somatic retrotransposition

and the highly mutable poly-Amicrosatellites they create, poten-

tially any type of somatic mutation that can similarly be defini-

tively validated could be used for this purpose (Shapiro et al.,

2013). Indeed, prior studies have found diverse types of somatic

mutation in human brain, including copy-number variants

(Cai et al., 2014; McConnell et al., 2013), point mutations (Poduri
et al., 2012), and other microsatellite polymorphisms (Gonitel

et al., 2008). Since our single-neuron WGS captures most of

the genome at high read depth, our methods may be extended

to examine nearly all types of somatic mutation in one experi-

ment. Further single-cell WGS studies of all classes of mutation

simultaneously may achieve high-resolution tracing of lineages

in human brain.

One limitation of retrotransposons for lineage tracing is our

prior (Evrony et al., 2012) and current finding that, at least in the

cerebral cortex, somatic insertionsare relatively infrequent, being

undetectable in 12/16 single-neuron genomes. Nonetheless,

they offer important advantages as lineage markers relative to

other mutation types: (a) they possess characteristic sequence

signatures confirming they were created in vivo and not by

MDA; (b) their breakpoints enable ultrasensitive assays; (c)

each insertion is unique so that homoplasy (occurrence of iden-

tical independent mutations) does not confound analysis. Spon-

taneous somatic retrotransposition as a tool to study brain devel-

opment is compellingly analogous to classical retroviral labeling

used to study cortical development in other mammals (Walsh

and Cepko, 1992; Ware et al., 1999); in fact, retrotransposons

and retroviruses are evolutionarily related (Eickbush and Jambur-

uthugoda, 2008). Identification of genetic backgrounds more

permissive for retrotransposition (Muotri et al., 2010; Zhao

et al., 2013), or individuals with a higher load of active elements,

may identify brains with more spontaneously labeled lineages.

Notably, a recent study with a transgenic synthetic L1 mouse

model found significant rates of somatic truncation of long

(>100 bp) L1 poly-A tails (Grandi et al., 2013), consistent with

our findings with endogenous human L1 elements. We also pro-

filed single poly-A tails of a tumor-specific somatic L1 insertion

we identified in a breast cancer (Figures S18A–S18C; Table S3)

and found distinct poly-A size distributions in a metastasis of

the cancer compared to the primary tumor (Figures S18D and

S18E; Table S5), consistent with most of the metastasis deriving

from likely one cell or at most a few cells. The significant somatic

mutation of retrotransposon poly-A tails (see Note S2 for discus-

sion) supports the potential of high-throughput microsatellite

analysis for systematic lineage tracing (Naxerova et al., 2014;

Shapiro et al., 2013).

The somatic mutations we studied exhibited distinct spatial

patterns of mosaicism, resembling patterns of clonal dispersion

previously seen only in animal models and suggesting that focal

patches of somatic mutation are prevalent throughout normal

brains. The detection of L1#1 only in the middle frontal gyrus

suggests that it occurred in a neocortical progenitor relatively

late in cortical development. Its isolation from a population of

neurons with the largest nuclear size also suggests that it is likely

present in pyramidal neurons (Evrony et al., 2012). Moreover, the

focal spatial distributions of the L1#1 lineage and its sublineages

imply radial ontogenetic units (Rakic, 2009). On the other hand,

the dispersion of the L1#1 lineage at very low mosaicism

(z0.1%) across at least 2 cm of cortex supports the existence

of clonal heterogeneity among neocortical progenitor-derived

cells within any given cortical column, consistent with lineage

tracing studies in other mammals (Gao et al., 2014; Kriegstein

and Noctor, 2004; Reid et al., 1997; Torii et al., 2009; Walsh

and Cepko, 1988; Ware et al., 1999). Importantly, this implies
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additional complexity in the possible ways different somatic mu-

tations may overlap spatially and interact to affect cortical

circuits.

L1#2 marks a distinct lineage with a much wider geographic

distribution than L1#1, suggesting it arose earlier in develop-

ment. However, L1#2’s low mosaicism (<2%) spanning the

entire rostrocaudal length of the brain (from forebrain to hind-

brain) implies surprising intermingling of clones in the early cen-

tral nervous system (CNS). Remarkably, genetic fate-mapping

of CNS clones in mouse (Mathis and Nicolas, 2000) revealed

the same unexpected finding of significant rostrocaudal disper-

sion, with evidence suggesting that this results from intermixing

along the rostrocaudal axis among the earliest CNS progeni-

tors. Therefore, L1#2 likely inserted into one of the earliest pro-

genitors of the CNS in the anterior (rostral) epiblast or early

neural plate, prior to the transition to coherent growth when

clonally related cells have more restricted rostrocaudal disper-

sion. It is possible that some L1#2-containing cells derived

from ventral telencephalon progenitors, which give rise to inter-

neurons that disperse across the cortex (Marı́n, 2013), though

proving this would require new phenogenomic technologies

combining single-cell genomics with broader single-cell pheno-

typing. In situ hybridization methods, such as High-Definition

DNA Fluorescence In Situ Hybridization (HD-FISH), offer one

possible route for phenogenomic study of somatic mutations

(Bienko et al., 2013) to resolve cell-type, morphology, and layer

distributions of cells within a lineage. However, attempts so far

to detect somatic insertions shorter than 1 kb (such as the L1

transduction sequences available as targets in the current

study) directly in brain tissue sections using this approach

pose formidable challenges due to the sensitivity limits of cur-

rent probe designs (M. Bienko, personal communication). We
56 Neuron 85, 49–59, January 7, 2015 ª2015 Elsevier Inc.
provide a developmental model for the somatic mutation

events we identified in Figure 5. Overall, these results illustrate

how somatic mutations can yield important insight into clonal

dispersion patterns in human brain development and point to

the potential of future systematic study of large numbers of mu-

tations and single cells to delineate lineages in the human ner-

vous system.

The two L1 clones and smaller sublineages also match pat-

terns of known somatic mutation disorders of human brain

development and predict the existence of additional types of so-

matic lesions. Deleterious somatic mutations in mammalian

target of rapamycin (mTOR) pathway genes cause hemimega-

lencephaly and showwide dispersion throughout an entire hemi-

sphere (Poduri et al., 2012; Lee et al., 2012a), similar to L1#2,

while focal cortical dysplasias, the most common cause of

intractable epilepsy, are generally limited to smaller areas of

cortex, remarkably similar to L1#1 (Poduri et al., 2013). Other

deleterious mutations with such restricted distributions could

potentially impact cortical areas strikingly unequally, affecting

small regions of cortex (L1#1) or only one hemisphere (L1#2),

providing a possible mechanism to generate selective and un-

predictable disorders of cognition. Focal lesions of unknown eti-

ology have been described in histology of brains of patients with

autism spectrum disorder (Stoner et al., 2014); however, many

autism brains do not have structural or radiographic findings.

Focal mutation of genes involved in synaptic function, for

example, may impair neuronal function locally without being

structurally evident. Comprehensive single-cell sequencing

and somatic mutation analyses across all cell types, brain re-

gions, and time points in development will inform an understand-

ing of normal human brain development and the role of somatic

mutation in neuropsychiatric disease.



EXPERIMENTAL PROCEDURES

See Supplemental Experimental Procedures in the Supplemental Information

for full method details.

Human Tissues and DNA Samples

Postmortem tissues from individual UMB1465 were obtained from the NIH

NeuroBioBank at the University of Maryland. UMB1465 was a 17-year-old

male and one of the individuals profiled in our previous single-neuron L1

insertion profiling (L1-IP) study (Evrony et al., 2012). All UMB1465 tissues

were frozen and stored at �80�C without fixation within 4 hr of death, except

for the right cerebral hemisphere, which was formalin-fixed. Coronal sections

of the frozen left cerebral cortex were photographed before and after sam-

pling. Sampled locations were mapped to a representative brain using

measured section thicknesses and anatomy of gyri. Since an image of the

complete brain of individual 1465 prior to sectioning was not available,

sampled locations are illustrated on a representative brain image from the

University of Wisconsin and Michigan State Comparative Mammalian Brain

Collection (http://brainmuseum.org).

Bulk DNA was extracted from tissues with the QIAamp DNAMini or QIAamp

DNA FFPE Tissue kits (Qiagen). Genomes of the 16 cerebral cortex single-

neuron samples and the caudate nucleus 100-neuron sample were amplified

byMDA (Dean et al., 2002) as part of our previous targeted L1-IP study (Evrony

et al., 2012). The 16 single neurons were originally sorted from location D of the

left middle frontal gyrus. Unamplified bulk DNA from a breast cancer primary

tumor, lymph node metastasis, and normal blood from an individual (ID:

TCGA-E1-A15E) were obtained with permission from The Cancer Genome

Atlas (TCGA) project.

Whole-Genome Sequencing and Read Alignment

Paired-end whole-genome sequencing libraries were prepared with the NEXT-

flex DNA Sequencing Kit (Bioo Scientific) from 500 ng of DNA. Paired-end

sequencing (100 bp3 2 or 101 bp3 2) was performed onHiSeq 2000 (Illumina)

sequencers. High-coverage whole-genome sequencing data from prior

studies of MALBAC-amplified single cancer cells (SW480 cancer cell line)

(Zong et al., 2012) and MDA-amplified single lymphoblastoid cells (YH cell

line) (Hou et al., 2012), and corresponding unamplified bulk DNA, were ob-

tained from the NCBI Sequence Read Archive (SRA). High-coverage whole-

genome sequencing data for breast cancer primary tumor, metastasis, and

normal blood samples from individual TCGA-E1-A15E were obtained from

CGHub. Sequencing reads were aligned to hs37d5 (1000 Genomes Project

human genome reference based on the GRCh37 primary assembly) using

bwa (Li and Durbin, 2009).

Single-Cell Analysis of Somatic Retrotransposition

Somatic retrotransposon insertion analysis was performed with scTea (Single-

cell Transposable element analyzer). scTea is based on the Tea pipeline origi-

nally developed to detect somatic insertionsof transposableelements in cancer

genomes (Lee et al., 2012b), with additional significant modifications for single-

neuron whole-genome analysis, including the following: (a) a scoring scheme

assigning a score to each call, taking into account MDA and library preparation

amplification noise; (b) improved handling of poly-A signals; (c) copy number

genotyping of insertion calls; (d) local read assembly to detect transduced se-

quences; (e) a revised transposable element sequence library using only known

active retrotransposon subfamilies; (f) rigorous sensitivity analyses to establish

call criteria; and (g) specificity analyses using independent PCR validation.

Validation and Cloning of Retrotransposon Candidates

Validation of germline and somatic insertion candidates predicted by scTea

was attempted by: (1) full-length PCR (FL-PCR) with genomic primers flanking

the candidate (for Alu and L1 candidates) and (2) 30-junction PCR (30 PCR) with

a primer designed downstream of the 30 end of the candidate paired with an

internal primer specific to the 30 sequence of the retrotransposon (for L1 and

SVA candidates). Primer design and full-length cloning were performed as pre-

viously described (Evrony et al., 2012). Sequences of validation primers used

for each candidate insertion can be found in Table S3. Positive validation reac-

tions were confirmed by Sanger sequencing.
Droplet Digital PCR

Custom droplet digital PCR (ddPCR) assays for L1#1 and L1#2 were per-

formed with the QX100 Droplet Digital PCR System (Bio-Rad). L1 assays

weremultiplexed with an assay forRNaseP serving as a genomic copy number

reference for calculation of mosaicism. Multiple unrelated human control sam-

ples confirmed assay specificity (Table S4), and the presence or absence of

L1#1 and L1#2 in unamplified bulk DNA from every location and tissue was

independently verified by a bulk nested 30-junction PCR (Figure S15).

Poly-A Tail Cloning and Sizing

Poly-A tail lengths of somatic retrotransposon insertions were measured using

a digital nested 30 PCR approach (dnPCR) in which single copies of poly-A tails

are cloned directly from unamplified bulk DNA, thereby avoiding potential MDA

artifacts. Single-copy (digital) cloning by dnPCR also recovers the true poly-A

tail distribution in tissues, which is not possible with bulk (nondigital) PCR,

since PCR amplification efficiency varies with poly-A tail length (data not

shown). dnPCR is performed by diluting DNA to a target retrotransposon inser-

tion concentration of 0.3 copies/reaction based on the absolute concentration

measured by ddPCR, such that there would be <5% chance that the diluted

DNA input into a dnPCR reaction would contain >1 poly-A tail. A two-round

nested PCR targeting the 30 junction (containing the poly-A tail) of the somatic

retrotransposon insertion is then performed on the diluted DNA, using a FAM-

labeled primer in the second-round PCR. dnPCR reactions are screened by

agarose gel electrophoresis to identify reactions yielding a product. dnPCR

products are then sized by capillary electrophoresis on 3130 or 3730 DNA An-

alyzers (Life Technologies) to obtain the poly-A tail length. A subset of positive

dnPCR reactions from each tissue and location were Sanger sequenced (Gen-

ewiz) and confirmed that dnPCR amplifies the targeted retrotransposon inser-

tion with 100% specificity (data not shown). dnPCR results across tissues

show that dnPCR measures poly-A tails with a precision up to ±1 bp across

a wide range of poly-A tail sizes (see Supplemental Experimental Procedures

for details).
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