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KEY POINTS

� Development of the cerebral cortex is a tightly regulated process, and disruption in any
part of this process can lead to malformations of cortical development (MCDs).

� MCD can primarily be classified into abnormalities of neurogenesis, abnormalities of
neuronal migration, and abnormalities of postmigrational development.

� Recent advances in genomic technology have allowed for an unprecedented expansion in
the knowledge of these disorders and have elucidated molecular pathways that can serve
as targets for therapeutic interventions.
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CLINICAL BACKGROUND

The development of the human cortex is a complex and tightly regulated process.
During development, distinct cell types must proliferate, differentiate, migrate, and
integrate to form a highly complex structure, capable of complex cognition, language,
and emotion.1 Disruptions in any of these processes lead to malformations of cortical
development (MCD), which are common causes of neurodevelopmental delay and/or
epilepsy.2 Individuals presenting early can show feeding difficulties soon after birth (in
some instances, in utero swallowing difficulty may present as polyhydramnios),
abnormal head size (microcephaly or macrocephaly), epileptic encephalopathies, or
global developmental delay. Some patients with MCD may present early with severe
neurologic impairment, whereas others present with epilepsy and mild functional
impairment at a later age. Individuals who present later may exhibit focal epilepsy,
learning difficulty, and behavioral issues, such as attention deficit hyperactivity disor-
der.3 Occasionally, a few individuals may be diagnosed only on screening, as their
deficit may not be clinically apparent.
Classification systems for MCDs, first introduced in 1996 and subsequently revised

in 2001, 2005, and 2012 to incorporate the improved understanding of cortical devel-
opment, divide MCDs into 3 major groups, namely, malformations secondary to
abnormal neuronal and glial proliferation or apoptosis, malformations due to abnormal
neuronal migration, and malformations secondary to abnormal postmigrational devel-
opment. This system is based on the developmental steps at which the process is first
disrupted, the underlying genes and biological pathways affected, and imaging fea-
tures,2 although there is surprising overlap in the phenotypes of many genes, reflecting
involvement of some genes in more than one stage of development.
Genomic variants are changes in one allele of a gene of an individual compared with a

reference genome. Variantsmaybe small (<1 kilobasepair) and include substitutions and
small insertions and deletions (indels) ormay be large (>1 kilobasepair) and include copy
number variants (CNVs) (larger insertions or deletions) and rearrangements, such as
translocation and inversion. Lastly, genomic variants also include whole chromosome
numerical alterations such as aneuploidy. Although many variants are not associated
with disease (and instead are referred to as benign variants), certain deleterious variants
that alter the function of a genemay cause disease, representing disease-causingmuta-
tions.Humangeneticdiseaseshave traditionallybeen thought to reflect either inheritedor
denovo (spontaneous) variants. Thesemutationsarepresent inall thecellsof theaffected
individual and can be detected in any cell of the body, including readily available periph-
eral blood, and are referred to as germline mutations. Somatic mutation, on the other
hand, is a postzygotic mutational event that leads to an individual having 2 or more pop-
ulationsof cellswithdistinct genotypes, despite developing fromasingle fertilizedegg4,5;
somatic mutations thus represent a subset of the larger category of de novo mutations.
This review focuses on the recent advances in understanding the genetics of MCDs,

including recent updates on the role of somatic mutations in MCDs. Large-scale
sequencing projects have led to an exponential increase in the knowledge of the
genes associated with MCDs, and the authors address some of these recent discov-
eries. Although most MCDs are caused by genomic variants, a proportion of MCDs
(such as schizencephaly) are associated with nongenomic mechanisms and may be
secondary to environmental causes.

EMBRYOLOGY OF CEREBRAL CORTICAL DEVELOPMENT

The normal human cortex is composed of 6 distinct histologic layers. Its development
begins from neuroepithelial progenitors lining the lateral ventricles, which divide to
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expand the progenitor pool and then give rise to intermediate progenitors that subse-
quently divide and give rise to neurons. The neuronsmigrate from the proliferative ven-
tricular zones toward the pial surface of the brain to form the layered cortex, where the
connections between neurons form and mature.1,6

The principal excitatory neurons of the cerebral cortex and hippocampus are
derived from an embryonic neuroepithelium, with progenitor cells lining the ventricular
surface deep in the brain. In animal models, inhibitory neurons that populate the cere-
bral cortex are formed outside the cortex in a second proliferative zone in the basal
forebrain called the ganglionic eminence, which generates the basal ganglia. These
neurons migrate large distances in nonradial direction before turning radially to enter
the cortex.7 There is recent evidence that human interneurons are formed by a similar
mechanism.8 Astrocytic glial cells arise from several sources, including progenitors
that also generate principal neurons,9 whereas oligodendrocytes arise in the basal
forebrain that generates cells for the entire forebrain.10

RECENT ADVANCES IN GENETICS AND PATHOMECHANISM OF MALFORMATIONS OF
CORTICAL DEVELOPMENT
Overview

Historically, geneticists have relied on principles of mendelian inheritance to identify
genes, which when perturbed, lead to development of specific symptoms. Linkage
analysis, homozygosity mapping, positional cloning, and/or candidate gene
sequencing have helped identify the genetic causes of many forms of MCDs.11–14

Studying individuals/families with MCDs allows one to understand the critical compo-
nents of normal brain development and function.
High-throughput next-generation sequencing (NGS) allows one to interrogate mul-

tiple regions of the genome at once to identify tens of thousands of genetic variants in
an individual’s genome.15 These variants can then be filtered bioinformatically using
certain criteria, such as absence in control population, allele frequency, predicted
pathogenicity, and inheritance model, to narrow down the candidate gene list to a
few genes. With NGS, causal variants can be identified in a few weeks, and this has
led to a surge in the identification of novel genes as well as new alleles in known dis-
ease genes. With these recent advances in genetics, certain MCD-related genes, such
asWDR62 andDYNC1H1, have been associated with a broad range of malformations,
suggesting that some of these genes are implicated in many developmental stages
that are functionally and genetically interdependent.3

Improved genomic tools have shed light on the role of de novo mutations in intellec-
tual disability.16 Although traditionally, de novo mutations were considered to have
developed in the egg or the sperm of the unaffected parents, there is increasing evi-
dence of the role of postzygotic (or somatic) de novomutations in neurologic disorders
as well. As these mutations may be present in only a small proportion of the cells in the
body, traditional methods of testing using leukocyte-derived DNA have been shown to
miss most of these somatic mutations.17 Some of these mutations may be present
only in the affected tissue, and testing of nonaffected tissue, such as blood DNA,
may not be informative.17–19

Microcephaly

Primary microcephaly
Primary microcephaly (or microcephaly vera) is defined as the clinical finding of a head
circumference less than 3 standard deviations (SD) less than the age- and sex-related
mean, which is present at birth and is commonly associated with intellectual
disability.20 Genes known to cause primary microcephaly affect pathways involving
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neurogenesis, resulting in decreased number of neurons and smaller brain size.2

These pathways include cell cycle progression and checkpoint regulation (MCPH1,
CENPJ, CDK5RAP221), centrosome duplication (NDE122), centrosome maturation
(CDK5RAP2, CENPJ21), cell proliferation (STIL, ASPM23,24), mitotic spindle formation
(WDR62, NDE125,26), and DNA repair (PKNP, PCNT27,28). Aberrations in these path-
ways highlight the important role of centrosome in neuronal proliferation. The centro-
some is a key microtubule-organizing center that helps maintain the cellular
cytoskeleton and coordinate the segregation of duplicated chromosomes during
cell division. Mutations in genes encoding centrosomal proteins, or proteins required
for proper chromosomal segregation, account for the largest number of genetic
causes of microcephaly and may form a common pathway to regulate neuronal pro-
genitor proliferation.20

With the exception ofWDR62 (polymicrogyria [PMG], subcortical heterotopia)25 and
ARFGEF2 (periventricular nodular heterotopia [PVNH]),29 primary microcephaly genes
do not produce obvious brain anomalies except for simplified gyral pattern and hypo-
plasia of the corpus callosum.27,30,31 No definable clinicoradiologic characteristics
that separate the different types of microcephaly caused by mutations in different
stages of the cell cycle have been identified,2 suggesting that sequencing panels of
genes is an efficient diagnostic approach.

Postmigrational microcephaly
In contrast to primary microcephaly, individuals whose head circumference are normal
or slightly small (2 SD below mean) at birth, but develop severe microcephaly in the
first 1-2 years are referred to as postmigrational microcephaly.2 In these individuals,
brain growth slows during late gestation or early postnatal period after normal early
development. Examples of genes involved in this condition include CASK (associated
with microcephaly with disproportionate cerebellar and brainstem hypoplasia),32

MECP2 (Rett syndrome),33 and UBE3A (Angelman syndrome)34 and genes of proteins
related to protein synthesis, including transfer RNA (tRNA) splicing endonuclease sub-
unit genes such as TSEN54, TSEN2, and TSEN34; aminoacyl-tRNA synthetases such
as RARS2; and SEPSECS associated with pontocerebellar hypoplasias.2,35 Mutations
in QARS, a cytoplasmic aminoacyl-tRNA synthetase, has been reported in individuals
with progressive microcephaly, intractable seizures, diffuse atrophy of the cerebral
cortex, and cerebellar vermis and considerably mild atrophy of the cerebellar hemi-
spheres.36 As the disruption occurs late in cerebral development, these disorders
may someday be good candidates for intervention once the molecular causes have
been elucidated.

Overgrowth-Related Disorders

Megalencephaly and hemimegalencephaly
MegalencephalywithPMG is a sporadic overgrowthdisorder associatedwithmarkedly
enlarged brain size (head circumference more than 3 SD), sometimes seen with devel-
opmental vascular anomalies, distal limb malformations (polydactyly and syndactyly),
and mild connective tissue dysplasia, when it is referred to as megalencephaly-
capillary malformation-polymicrogyria (MCAP) syndrome.37 Hemimegalencephaly,
on the other hand, refers to asymmetric brain enlargement that is typically isolated,
although it has been reported in association with tuberous sclerosis, hypomelanosis
of Ito, and Proteus syndrome.18 Hemimegalencephaly is associated with dysmorphic
immature neurons, neuronal heterotopia, and cortical dyslamination.18,19

Exome sequencing and targeted deep sequencing have identified de novo germline
and postzygotic (or somatic) point mutations in AKT3, PIK3CA, and PIK3R2 in
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individuals with MCAP syndrome and hemimegalencephaly.18,19,38 Somatic CNV
increases of chromosome 1q involving AKT3 have also been identified in individuals
with hemimegalencephaly.19,39 Mutations in PTEN also lead to megalencephaly,
autism, and tumor predisposition.40 The phosphoinositide 3-kinases (PI3Ks) are a
family of signaling enzymes that regulate a wide range of cellular processes, including
growth, proliferation, survival, migration, and brain development. PTEN is a tumor sup-
pressor gene that antagonizes the PI3K signaling pathway, whereas AKT kinases are
downstream effectors of PI3K signaling and have a critical role in growth regulation.
Gain of function mutations or increased copy number of AKT3 hyperactivates the
mammalian target of rapamycin (mTOR) pathway, causing increased cell growth, ribo-
some biogenesis, and messenger RNA translation. The tuberous sclerosis complex
(TSC) genes encode negative regulators of mTOR, so that loss of these genes (in
tuberous sclerosis) also leads to hyperactivation of mTOR, leading to overgrowth of
normal cells and production of abnormal cells in many organs.38

Focal cortical dysplasia
Focal cortical dysplasias (FCDs) are a heterogeneous group of disorders that are char-
acterized by abnormal cortical lamination and defects of neuronal migration, growth,
and differentiation involving 1 discrete cortical region, several lobes, or even the entire
hemisphere.41 FCDs are the most common cause of medically refractory epilepsy in
the pediatric population. The cause is heterogeneous and can be genetic or environ-
mental. FCDs are classified into 3 groups42:

� FCD I: This condition presents with mild symptoms and is often seen in adults, and
changes are typically seen in the temporal lobe. Evidence suggests that prenatal
and perinatal insults, including extremeprematurity, asphyxia, bleeding, stroke, hy-
drocephalus, and shaking injury, are commonly observed in patients with FCD I.

� FCD II: Clinical symptoms are more severe with onset typically in childhood.
Radiologic changes are seen outside the temporal lobe with predilection for the
frontal lobes. Histologic characteristics of FCD II are more homogenous across
patients, and evidence points toward genetic mutations that lead to perturbation
of the mTOR pathway in the pathogenesis of FCD type IIb.43 Patients with muta-
tions inDEPDC5, which typically cause epilepsywithout any imaging abnormality,
havebeen reportedwith FCD, suggestinga secondhit phenomenon, analogous to
TSC, with a somatic mutation in the other allele of DEPDC5 or another gene in the
mTOR pathway, causing the malformations in these patients.44

� FCD III: This condition is associated with acquired pathology during early devel-
opment, such as hippocampal sclerosis, vascular malformations, epileptogenic
tumor or injury secondary to head trauma, encephalitis, or hypoxic ischemic
injury. As seen in FCD IIb, dysregulation of mTOR pathway has been described
in certain forms of FCD III.43

Abnormal Neuronal Migration

Heterotopia
Heterotopia can range from PVNH (Fig. 1A) to periventricular linear heterotopia to
columnar heterotopia and is secondary to abnormalities of the neuroependyma and
failure to initiate migration. Although the exact pathophysiology remains to be eluci-
dated, evidence suggests that injury to the neuroependyma is an important factor in
the formation of PVNH. Classic PVNH is associated with mutations in FLNA.13 The
phenotype of patients with FLNA-related PVNH has been expanded to include a
wide spectrum of connective tissue and vascular anomalies, including aortic root dila-
tation.45,46 Autosomal recessive forms of PVNH have been described in patients with



Fig. 1. Axial magnetic resonance images of the brain showing (A) periventricular nodular
heterotopia (black arrows), (B) pachygyria (black arrows), (C) subcortical band heterotopia
(arrowheads), and (D) polymicrogyria (white arrows).
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mutations in ARFGEF229 and C12orf57.47,48 Other potential genetic loci for genes
associated with PVNH include 7q11.23, 5p15.1, 5p15.33, 5q14.3-q15, and 4p15.49

Lissencephaly and subcortical band heterotopia
Abnormal transmantle migration can lead to agyria (complete absence of gyri), pachy-
gyria (reduced but thickened gyri) (see Fig. 1B), and subcortical band heterotopia or
double cortex syndrome (see Fig. 1C). Most cases of lissencephaly are attributable
to mutations in LIS1 (also known as PAFAH1B1) and DCX and are commonly loss of
function alleles. LIS1 alleles include genic deletions, missense mutations, and
nonsense mutations; DCX alleles include nonsense mutations, frameshift mutations,
genic deletions, and splicing mutations that are distributed across the entire length of
the protein, whereasmissensemutations cluster predominantly around the 2 functional
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microtubule-binding domains and disrupt tubulin binding.50–53 Germline null mutations
inLIS1causeclassic lissencephaly,whereasgermlinemutations inDCX,which ison the
X-chromosome, result in lissencephaly inmales and subcortical band heterotopia in fe-
males. Somaticmutations inDCXandLIS1, affecting as fewas10%of leukocytes, have
been associated with variable degree of subcortical band heterotopia.17

With use of NGS, mutations in additional genes have been identified. These include
TUBA1A (encoding a neuronal a-tubulin),54 DYNC1H1 (encoding a dynein heavy chain
isoform), KIF2A (encoding a kinesin heavy chain), KIF5C (encoding a member of the
kinesin superfamily of proteins), and TUBG1 (encoding g-tubulin) and have been re-
ported in patients with milder disease on the lissencephaly spectrum.17,55 These dis-
coveries highlight the role of cytoskeletal proteins in neuronal migration. In addition,
the complex of cytoplasmic dynein with Lis1, Nde1, and Ndel1 has been known to
be essential for neuronal migration, and patients with mutations in NDE1 have been
reported in association with microlissencephaly, highlighting the link between micro-
cephaly and lissencephaly.22

Cobblestone malformations
Cobblestone malformations are associated with abnormal migration of neurons into
the leptomeninges and are a result of deficiencies in the cerebral basement membrane
due to defects in O-mannosylation of a-dystroglycan.56 This condition leads to
abnormal cortical lamination and overmigration of neurons through the incomplete
basement membrane into the pial layer.2 Mutations in multiple genes in the glycosyl-
ation pathway have been identified, and mutations in the same gene can cause widely
different phenotypes.57 For example, mutations in FKRP, encoding a fukutin-related
protein, were initially identified in patients with only severe congenital skeletal muscle
defects58 but since have been identified in patients with milder skeletal system de-
fects59 and in patients with central nervous system (CNS) malformations and eye
involvement.60 Genes associated with glycosylation within the endoplasmic reticulum
(SRD5A3)61 or Golgi apparatus (ATP6V0A2)62 have also been reported in patients with
cobblestone malformations.
Dystroglycanopathies can cause a wide range of disorders ranging from isolated

brain malformation to intellectual disability with microcephaly and skeletal muscle
and eye involvement. These syndromes are commonly referred to as Walker-
Warburg syndrome, muscle-eye-brain disease, Fukuyama congenital muscular dys-
trophy, and congenital muscular dystrophy type 1C and 1D, depending on the extent
of tissue involvement.60 However, elucidation of the genetic underpinnings has
prompted a reclassification of the dystroglycanopathies.57

Patients with mutations inGPR56may also present with cobblestone malformations
but do not show a known glycosylation defect. GPR56 is a G protein–coupled receptor
that is preferentially expressed in the neuronal progenitor cells of the cerebral cortical
ventricular and subventricular zones during periods of neurogenesis but not in the
cortical plate or intermediate zone. GPR56 is postulated to regulate cortical
patterning, and patients with mutations in GPR56 have a thin cortex, suggesting a
role in cell fate control during neurogenesis.63

Polymicrogyria

PMG (see Fig. 1D) refers to a cerebral cortex with many excessively small gyri.3 The
cause of PMG is highly heterogeneous and can be subdivided into two: with schizen-
cephalic clefts likely due to infection or vascular causes and without clefts but with and
without associated CNS and non-CNS malformations and with certain types of inborn
errors of metabolism (IEM).2
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Polymicrogyria without clefts
PMGwithout clefts can be secondary to a genetic or disruptive process. Isolated PMG
is classified by location; however, the genetic cause remains unknown for most of the
PMG syndromes.2 The most common form is bilateral perisylvian PMG, which pre-
sents with oromotor dysfunction, intellectual disability, and epilepsy. The clinical pre-
sentation of patients with other forms of PMG varies widely and depends on the extent
of PMG and presence of other brain malformations, such as cerebellar hypoplasia or
microcephaly. PMG can affect cortical areas representing language or primary motor
functions, yet these functions can be retained with minimal or no disability.3

CNVs, especially deletion of chromosome 1p36.3 and chromosome 22q11.2, have
been reported in association with PMG, although the causal genes remain to be iden-
tified. Common syndromic associations with PMG include Adams-Oliver syndrome,64

Joubert syndrome and related disorders,65 Goldberg-Shprintzen syndrome,66 War-
burg Micro syndrome,67,68 and Aicardi syndrome.69 Mutations in genes encoding
a-tubulins, such as TUBA8,70 and b-tubulins, such as TUBB2B71 and TUBB3,72

have been reported in patients with PMG in isolation or in the presence of other brain
malformations, including corpus callosum anomalies and optic nerve hypoplasia.
PMG-like cortical malformations have also been reported in patients with IEM,

including peroxisomal disorders (such as Zellweger syndrome, neonatal adrenoleuko-
dystrophy), fumaric aciduria, glutaric aciduria type 2, maple syrup urine disease, and
mitochondrial diseases.2,3 However, the pathomechanism of these associations is not
well established. Some forms of PMG are also associated with the megalencephalic
conditions and cobblestone disorders described earlier, and so those genes should
be considered in the differential genetic diagnosis.

Schizencephaly
In schizencephaly, the cortex edges can be fused (closed lip) or remain at a distance
(open lip) and may be unilateral or bilateral. Patients with closed-lip unilateral schizen-
cephaly may present with hemiparesis or motor delay, whereas patients with open-lip
schizencephaly present with hydrocephalus or seizures.3 Histologically, the cortex
surrounding the cleft shows loss of laminar architecture, forming irregular heterotopic
aggregates of gray matter. Although there was initial evidence of role of mutations in
EMX2 as a cause of schizencephaly,73 subsequent analysis has not further confirmed
this,74,75 and current understanding supports a nongenetic cause for most cases,
likely infection (commonly cytomegalovirus)76 or vascular event.77 In addition, young
maternal age and monozygotic twin pregnancies have been associated with higher
incidence of schizencephaly.77

DIAGNOSTIC STRATEGY
Brain Imaging

In patients presentingwith clinical features suggestive ofMCD, diagnostic imagingwith
MRI is recommended to delineate the type ofMCD.3 The key features to look for include
distribution and severity of MCD, the cortical surface and border between white and
gray matter, cortical thickness, and any other associated brain malformations (such
as anomalies of the corpus callosum, brainstem, and cerebellum). Identification of
the type of MCD allows the clinician to focus on the malformation-relevant genes.

Tissue Consideration

Leukocyte-derived DNA from peripheral blood is the most readily accessible tissue for
genetic analysis in the clinic and can be used to detect any inherited or de novo germ-
line genomic variants. However, in patients who present with a specific radiologic



Malformations of Cortical Development 579
phenotype but show negative results on testing for the known malformation-related
genes, it is important to consider the role of somatic mutations. In this scenario,
DNA derived from buccal swabs has been shown to be more effective in detecting
these mutations.38,78 However, some mutations require direct examination of the
affected tissue (in this case, brain), which can be obtained from patients undergoing
resection of the affected tissue, for example, for epilepsy surgery.18,19

GENETIC TESTING
Single Nucleotide Variants

In cases in which 1 or 2 genes are known to be the predominant cause of the MCD
phenotype, for example, LIS1 and DCX for lissencephaly and FLNA for PVNH, tar-
geted Sanger sequencing of these genes may still be the best approach, although tar-
geted panels are increasingly the first-line test. Given the known genetic heterogeneity
of the MCD, such as in pachygyria or PMG, targeted gene panels are useful and cost-
effective, by efficiently analyzing multiple genes at once. An alternative strategy is to
perform whole exome sequencing (WES), which is the process of sequencing the cod-
ing regions of the entire genome in 1 reaction and has been shown to improve diag-
nostic yield to 25% in undiagnosed cases with mendelian disorder.79 However, one
advantage of targeted gene panel sequencing is that the coverage of the genes of in-
terest is more uniform than in WES. Another advantage is that targeted gene panel ob-
viates the issue related to incidental findings detected on WES (such as mutations in a
BRCA1, which may place the patient at risk for breast cancer in the future but are not
related to the primary phenotype).80 Lastly, targeted gene panel sequencing also al-
lows for deeper coverage, which in turn is more likely to detect low-frequency somatic
mutations.17

Copy Number Variants

CNVs have been associated with certain forms of MCDs, including PMG. Traditionally,
these CNVs were detected by cytogenetic analysis with karyotype and fluorescence in
situ hybridization (FISH) analysis for specific regions of the genome. However, karyo-
type analysis has a resolution of approximately 5 megabasepairs, and CNVs smaller
than this are not detectable by this method. FISH is specific only for certain regions
(eg, 22q11.2) but may be costly and laborious when probing multiple regions across
the genome. The advantage of karyotype analysis and FISH is that it provides structural
information and can detect translocation. Translocations that disrupt genes of interest
have been paramount in mapping of disease-related genes during the past 2 decades.
Chromosomemicroarray analysis (CMA) allows a clinician to detect submicroscopic

CNVs across the genome. The diagnostic yield of CMA in patients with neurologic dis-
orders is about 10% to 15%, and CMA has replaced karyotype analysis as the first-tier
test in the evaluation of a child with multiple congenital anomalies, developmental
delay, or autism spectrum disorders.81 Certain forms of CMA using single nucleotide
polymorphisms allow for detection of homozygosity in individuals with shared ancestry
or consanguinity and can aid in narrowing the list of candidate genes.82

CURRENT MANAGEMENT OF THE DISEASE
Investigations

Brain imaging with MRI is the first step in managing any patient who presents with
signs and symptoms of MCD. If the patient presents with seizures, electroencephalog-
raphy is prudent to detect any epileptogenic focus, which may be amenable to surgi-
cal resection. Other imaging modalities include diffusor tensor imaging, which can be
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used to better characterize the perturbation in brain development by evaluating the
neuronal tracts,83 and functional MRI, including magnetoencephalography, which
can be used to map brain activity and localize regions affected by pathology.84

Management

The treatment of these individuals is predominantly symptomatic. Developmental
delay is managed with neurorehabilitation, including physical and occupational ther-
apy and speech and feeding therapy. Learning disability should be managed based
on the severity of learning disability and neurocognitive delay; this could range from
additional help in regular school to special education classrooms. Patients with sei-
zures need to be managed with appropriate antiepileptic medications, under the guid-
ance of a neurologist. Occasionally, patients with focal epileptogenic focus may
benefit from surgical resection.85

Genetic counseling should be provided to individuals in whom a genetic cause is
identified and their families and even in those who do not have an identifiable cause
but the lesion is known to be genetic, through a referral to a clinical geneticist or genetic
counselor. In X-linked disorders, such asDCX, FLNA, and ARX, the carrier mother may
be completely asymptomatic and has a 50% risk of having another affected child.
Similarly, for disorders inherited in an autosomal recessive manner, the couple has a
25% risk of having another affected child and 50% risk of having an unaffected but car-
rier child. For disorders with dominant inheritance, both parents should be assessed
carefully with detailed physical examination and pertinent investigations, as some of
these diseases can have variable expression even within a family. If the parents are
affected, albeit mildly, they have a 50% risk of having another affected child. However,
if the parents are unaffected, the risk of them being mosaic carriers for the apparent de
novomutations is approximately 4%.86 In families with knownmolecular cause, prena-
tal testing in the form of chorionic villus sampling or amniocentesis can be offered to
guide subsequent pregnancies. Preimplantation genetic diagnosis may also be an op-
tion for families in which the pathogenic variant has been identified.
FUTURE TREATMENT APPROACHES

The understanding of the genes and pathways associated with MCDs is expanding
rapidly. For example, identification of somatic mutations in the PI3K-AKT-mTOR
pathway in patients with overgrowth-related disorders offers potential opportunity
for pharmacologic intervention for these disorders, although this remains untested.41

mTOR encodes the mammalian target for rapamycin and is used commonly as an
immunosuppressant. The antiepileptic effects of rapamycin have been evaluated in
animal models of cortical dysplasia. For example, in mice with inactivated TSC1, rapa-
mycin prevents epilepsy when given early and ameliorates seizure activity when given
at a later stage.87 In patients, administration of rapamycin has been demonstrated to
show reduction in the duration and frequency of seizures in a child with TSC88 and has
been associated with reduction in the size of the subependymal giant-cell astrocy-
tomas in patients with TSC.89

Similarly, patch clamp recordings from dysplastic neurons from patients with FCD
type IIb show excitatory responses of g-aminobutyric acid type A receptors that are
significantly attenuated by the SLC12A2 inhibitor bumetanide,90 which may justify tri-
als with bumetanide in patients with FCD administered anticonvulsants that increase
GABAergic function.3

With advances in genomic technology, the understanding of the molecular basis of
these MCDs, including the diversity within each MCD and the associated secondary
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phenotypes, will continue to improve, which will allow for more rational and targeted
treatment options. Identification of pathogenic variant can also allow for prenatal
testing to guide future pregnancies in these families.
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