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Over a century of efforts to categorize the astonishing diversity

of cortical neurons has relied on criteria of morphology,

electrophysiology, ontology, and the expression of a few

transcripts and proteins. The rapid development of single-cell

RNA sequencing (scRNA-seq) adds genome-wide gene

expression patterns to this list of criteria, and promises to

reveal new insights into the transitions that establish neuronal

identity during development, differentiation, activity, and

disease. Comparing single neuron data to reference atlases

constructed from hundreds of thousands of single-cell

transcriptomes will be critical to understanding these

transitions and the molecular mechanisms that drive them. We

review early efforts, and discuss future challenges and

opportunities, in applying scRNA-seq to the elucidation of

neuronal subtypes and their development.
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Introduction
The classification of cell types in the cerebral cortex has

challenged the greatest minds in the history of neuro-

science, and so perhaps it is no surprise that we do not

quite have it figured out yet. Ramon y Cajal and other

early histologists described the two major cortical neu-

ronal types — those with long, distantly projecting

axons and those with short, locally projecting
www.sciencedirect.com 
axons — and documented their many morphological

variations [1]. Brodmann, Campbell, Vogt and others

used the distribution of morphological types to subdi-

vide the cortex into cytoarchitectonic areas which we

now understand have important functional correlates [2–
4]. Yet, whereas classical neuroscientists reached con-

sensus around the neuronal types in brain structures like

the cerebellum over a century ago, the effort to develop

a comprehensive neuronal ‘parts list’ for the cortex has

lagged. Electrophysiological and circuit analyses arrived

in the mid-twentieth century with new tools and the

idea that morphological and functional classes of neu-

rons might somehow correspond, though the labor-in-

tensive nature of combining electrophysiology and

morphology has limited the ability to integrate form

and function. The revolution in molecular biology of the

late 20th century allowed an integration of developmen-

tal lineage, inferred from the expression of a few marker

genes [5], yet still it is not clear whether these criteria

can define a clean, non-overlapping ‘periodic table’ of

cortical neuronal types, or whether instead the classifi-

cation of cortical neurons is inherently less precise than

in other brain areas, with a mix of some sharply defined

classes and other, fuzzier categories [6,7]. This review

will focus on the relevance of single-cell transcriptomics

to the classification of cortical neuron subtypes by

genome-wide gene expression, and explore the unique

perspective afforded by scRNA-seq on the dynamic

processes of cortical neurogenesis and differentiation.

Transcriptomic classification of neuronal cell
types
Pioneering single-cell microarray and qRT-PCR studies

elucidated progenitor and neuronal subtypes in the mouse

brainstem [8], olfactory system [9], retina [10,11], inner ear

[12], and embryonic cortex [13,14], as well as developing

human and ferret cortex [15]. Now, single-cell RNA-seq

has opened the floodgates for deep transcriptomic analysis

of CNS cell types [16,17��,18–26] (see also recent review

by [27]). Although some early scRNA-seq studies have

tested specific hypotheses — for example, confirming the

‘one neuron-one receptor rule,’ that each individual pri-

mary olfactory neuron expresses one and only one olfac-

tory receptor gene [28–31] — most have aimed to

elaborate on the molecular identities of classically defined

neuronal types, discover new types, and begin to establish

definitive brain cell type taxonomies (Table 1). These

studies employ a generalizable two-stage approach to

scRNA-seq-based cell type classification. In the first stage

of analysis, single-cell transcriptomes are grouped through
Current Opinion in Neurobiology 2017, 42:9–16
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Table 1

Summary of experimental methods and main results for selected scRNA-seq studies classifying cell types in the mammalian brain. UMI, unique molecular identifiers; ERCC, spike-in

synthetic control RNAs.

Reference Cell selection and

isolation method

cDNA type Number of cells

used (total cells

sequenced)

Source of cells

assayed

Sequencing depth

(avg or median

reads per cell)

Numbers of genes

detected (average per

cell and/or cumulative)

and used for

classification

Cell types identified/

classified

Other notes

Kodama [8] Manual dissection

and cell picking

qRT-PCR (3-Prime end) 167 (208) Mouse medial

vestibular nucleus

N/A 59 hand-picked genes 6 neuronal types:

3 excitatory,

3 inhibitory

Further

subdivisions likely,

but classification

correlates with

known

morphological and

functional subtypes

Saraiva [29] FACS selection

followed by

Fluidigim C1

Full-length (SMARTer)

with ERCC

21 (58) Mouse olfactory

sensory neurons

4.4 Million 4717 detected per

cell; 13 582 total;

509 genes found to be

differentially

expressed between

individual neurons

18 known cell types,

one confirmed new

cell type

Confirmed the

‘one-neuron-one-

receptor’

hypothesis

Uoskin [17��] Manual dissection

and automated cell

picking

5-Prime (STRT) with

UMI

622 (799) Mouse dorsal root

ganglion

1.1 Million 3574 � 2010 detected

per cell; 12 750 used

to ID initial 4 neuronal

subgroups & non-

neuronal cells;

11 658 used for final

iterative clustering of

11 subtypes

11 neuronal

subtypes

68 ‘outliers or

unresolved ID’

(8.5% of all cells

sequenced)

Darmanis [35] Fluidigm C1 Full-length (SMARTer) 466 (482) Human adult

temporal lobe and

fetal cortex

2.8 Million �4000 detected per

cell

7 neuronal types:

2 excitatory,

5 inhibitory; one fetal

progenitor class

16 (3.3%) cells

excluded for low

reads (<400k)

Tasic [33��] Manual dissection

followed by single-

cell FACS into

microtiter plates

Full-length (SMARTer)

with ERCC

1679 (1739) Mouse (8 wks)

primary visual cortex

8.7 Million 7278 detected per

cell; 13 878 used for

classification

49 ‘core’ cell types:

19 excitatory,

23 inhibitory, 7 non-

neuronal; plus

‘intermediate’ cells

w/mixed identity

between two or more

‘core’ types

255 (15.2%) good

cells are of

‘intermediate’

neuronal subtype

Zeisel [32��] Manual

dissection � FACS

selection followed

by Fluidigm C1

5-Prime (STRT) with

UMI

3005 (3315) Mouse (3–5 wks)

somatosensory

cortex &

hippocampus

0.5 Million �4500 detected per

cell; 15k total

detected; top 5000 by

variance used for

classification

47 cell types: 7

excitatory neuron,

16 interneuron,

2 astrocyte,

6 oligodendrocyte,

and 2 immune

classes

310 outlier/poor

quality cells (9.4%)
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a combination of dimensionality reduction and hierarchi-

cal clustering, with varying degrees of iteration and super-

vision. In the second stage, the resulting cell groups are

contrasted against each other to identify differentially

expressed marker genes. This approach has so far met

with great success in marrying transcriptomic classifica-

tions to known cell types. As sample sizes expand and

studies proliferate, new methods to standardize these

taxonomies and map other data modalities onto transcrip-

tomic cell types will be critical.

The cerebral cortex: the ultimate cell type
diversity challenge
Three of the largest scRNA-seq studies of neuronal

identity published to date have, fittingly, tackled the

most heterogeneous brain region, the cerebral cortex

[32��,33��,34��]. In the first such study, unbiased sampling

of mouse primary somatosensory and hippocampal cortex

identified many non-neuronal cell types in addition to

seven excitatory and 16 inhibitory neuronal types, corre-

sponding well to existing layer-defined and marker-de-

fined classes [32��]. Acknowledging that an unbiased

sampling captures few cells from rare populations, the

authors also oversampled a subtype of interneurons by

FACS isolation, enabling them to find a novel subtype of

PAX6+ neurogliaform cells in layer I, nicely validated by

immunohistochemistry and electrophysiology [32��].

In contrast, selection of known neuronal populations by

microdissection and FACS purification from reporter

mice yielded a more diverse taxonomy of 42 neuron

classes [33��], reassuringly concordant with the selected

laminar and marker-based populations, but also further

subdividing many of these classes into putative novel

subpopulations. In addition, these authors’ classification

algorithm is relatively lenient with regard to cell type

ambiguity, assigning �15% of cells an ‘intermediate’

identity between two neuronal classes. In the most ex-

treme case, one third of layer IV neurons were classified as

intermediate between two of the three proposed layer IV

subtypes. What remains to be determined is the extent to

which these intermediate cells reflect algorithmic ‘over-

splitting,’ or subdivision of cell types based on transcrip-

tional variability that is in fact stochastic or state-related

rather than subtype identity-dependent. Further studies

will be necessary to differentiate state versus trait tran-

scriptional signals in these and any other proposed novel

neuronal types.

Adult human brain presents particular challenges for sin-

gle-cell studies, given the highly myelinated and dense

extracellular milieu of the tissue and the typical storage

conditions of postmortem samples, which make clean

dissociation of intact whole cells difficult [35]. There

are, however, reliable and reproducible protocols for iso-

lating single neuronal nuclei from frozen postmortem

human brain [36,37]. Fortunately, the nucleus contains
Current Opinion in Neurobiology 2017, 42:9–16



12 Developmental neuroscience
a significant amount of messenger RNA, and several

studies have now demonstrated single-nucleus RNA se-

quencing [38–40]. Lake et al. have taken this approach for

scRNA-seq-based cell type classification in the human

cerebral cortex, identifying 16 neuronal subtypes — 8 ex-

citatory and 8 inhibitory [34��]. Most intriguingly, these

authors also detected differences between neocortical

areas, for example, between the layer IV transcriptomic

subtypes present in frontal versus occipital cortex.

Merging transcriptomic taxonomy with other
data types
Given that traditional methods of cell type classification

are much lower throughput than scRNA-seq, they are

likely to be increasingly guided by single-cell transcrip-

tomic taxonomies, through the ability to collect the

transcriptome of a single cell that has already been

characterized by another method and map that transcrip-

tome onto large scRNA-seq reference data sets. Several

groups have recently demonstrated the collection and

sequencing of RNA from cells following electrophysio-

logical recordings [41�,42,43]. In one study, 45 CCK+

interneurons in cortical layer I were first characterized

by patch-clamp recording and classified into five subtypes

based purely on their electrophysiological properties

[41�]. Each cell’s contents were then aspirated into the

patch pipette and the RNA sequenced. The 45 single-cell

transcriptomes were then mapped onto 16 interneuron

subtypes defined previously [32��]. Interestingly, none of

the five electrophysiological subtypes corresponded to a

single transcriptomic subtype, with cells from each group

mapping to two, three, or even four different scRNA-seq-

defined interneuron classes. Similar discord was observed

for excitatory neurons.

Discrepancy between electrophysiological and transcrip-

tomic cell type could arise trivially from the technical

noise inherent in scRNA-seq, or from differences in

experimental conditions. However, it is notable that

electrophysiology seems to provide greater unity of

CCK+ interneuron subtypes compared to scRNA-seq,

again suggesting that the algorithm applied to the larger

scRNA-seq data set [32��] may have over-split some cell

types. Alternatively, the methods used to map one

taxonomy onto the other may improve with inclusion

of additional a priori knowledge; about a third of the
Table 2

Pros and cons of current single-cell capture and processing methods

Cell capture method Throughput, cells per day 

Manual/automated cell picking Tens of cells 

Flow cytometry Hundreds of cells 

Microfluidics Tens or hundreds*

Droplets Tens of thousands 

* Fluidigm’s high-throughput chip is expected to capture up to 800 cells p

Current Opinion in Neurobiology 2017, 42:9–16 
Patch-seq interneurons assayed in somatosensory cortex

mapped to subtypes predominantly found in hippocam-

pus in the prior scRNA-seq study. The electrophysiolog-

ical properties of Patch-seq cells were also highly

correlated with their expression of 24 of 167 genes encod-

ing relevant proteins — channels, pumps, receptors, so

on. It would be informative to cluster the larger scRNA-

seq sample using the same 167-gene panel and map the

Patch-seq interneurons onto the resulting taxonomy,

which should improve the correspondence between

the two data modalities. Indeed, overlapping but distinct

sets of genes are likely to determine distinct neuronal

properties, including morphology, electrophysiology,

and connectivity, as well as developmental processes,

like migration, that interact with these features. Al-

though several studies have found a nearly 1:1 correspon-

dence between morphology and electrophysiology for

layer I interneurons [42,44], such correspondence is

strikingly lacking for interneurons in the rest of the

cortical layers [44], supporting the partial independence

of these properties. It is likely that classifications based

on the summation of all of these transcriptional signals

will yield neither unambiguous subtypes nor clear corre-

spondence to individual cellular properties, and the

challenge rather will be to deconvolve single-cell tran-

scriptional profiles into the distinct signatures that cor-

respond to each domain of neuronal properties–
electrophysiology, location, dendritic arborization, axo-

nal projection, so on.

Droplets and the advantages of 10� higher
throughput
Although the methods employed by the vast majority of

scRNA-seq studies to date — manual or automated cell

picking [17��,28,31]; single-cell flow cytometry [33��];
and/or microfluidics (i.e., the Fluidigm C1 system)

[19,29,30,32��,34��,35] — may capture as much as 25%

of each cell’s mRNA, they are limited in throughput, and

by the cost-per-cell for library construction and sequenc-

ing (Table 2). An alternative approach involves encapsu-

lating single cells in nanoliter-volume droplets and

performing lysis and barcoded reverse transcription with-

in the droplets [26,45,46�]. For comparison, to assay

3300 cortical cells [32��] required weeks of cumulative

C1 run time; manual screening of cDNA samples; and

dozens of library preparations and sequencing lanes,
.

Cost per cell cDNA output

Tens of dollars 50, 30, or full-length cDNA

Dollars 50, 30, or full-length cDNA

Dollars full-length cDNA (barcoded*)

Cents 30 tag, already barcoded

er run, with some level of on-chip barcoding.

www.sciencedirect.com
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whereas a droplet-based study of the mouse retina [46�]
generated cDNA from 49 300 cells, pooled into seven

libraries, over the course of four days — that is, 15 times

the number of cells assayed by one fifth the amount of

sequencing, and probably less than one tenth the hands-

on processing time. The two main drawbacks of current

droplet-based methods are (1) only about 10% of a cell’s

mRNA molecules are captured; and (2) the lack of full-

length cDNA generation limits alternative splicing anal-

yses (Table 2), though technological improvements are

likely to ameliorate both of these disadvantages in the

near future.

Increasing throughput by three orders of magnitude

alleviates the pressure to choose between a hypothesis-

driven, targeted design that may miss unknown cell types

[33��] and an unbiased approach that undersamples mi-

nority populations [32��]. In fact, analyzing 49 300 retinal

cells first required excluding a large proportion of the rod

photoreceptors that, making up two thirds of the retina,

masked the transcriptional signatures differentiating oth-

er cell types [46�]. Following this in silico selection step,

39 cell types were defined based on a ‘training set’ of

�13 000 cells, and the remaining �36 300 cells were

classified by correlation to the training set. Notably,

the large sample size enabled identification of known

and novel neuronal subtypes as rare as 0.1%. Remarkably

however, these subtypes are still far fewer than the 60–
100 retinal cell types defined by morphology and physi-

ology [47]. In particular, retinal ganglion cells are known

to be highly diverse and yet, because they compose only

about 0.5% to 1% of cells in the retina, the current sample

of 49 300 cells was insufficient to detect heterogeneity

within the �500 RGCs assayed. Thus, even with the high

throughput of droplet-based methods, careful experimen-

tal design will be paramount, and a logical expectation is

that a complete cell type taxonomy from any tissue that

contains rare subpopulations will require a tiered ap-

proach of initial unbiased sampling followed by targeted

subpopulation studies using known or novel markers to

isolate the rarest cells.

Progenitor heterogeneity of the human fetal
cortex
Remarkably, while only a single scRNA-seq analysis of

mouse embryonic cortex has so far been published [48], a

large number of studies have applied single-cell tran-

scriptomics to fetal human cortex [15,35,49�,50�,51], mo-

tivated by the intriguing morphological heterogeneity of

primate cortical neural progenitor cells (NPC) [52–55]. A

major contributor to the diversity of primate NPC is the

relative abundance of basal or outer radial glia (ORG),

which morphologically, functionally, and transcriptionally

resemble apical radial glia of the ventricular zone (VZ) but

are located in the subventricular zone (SVZ). Two studies

employing scRNA-seq to uncover the distinct transcrip-

tional program of ORG employed different selection
www.sciencedirect.com 
methods to enrich for their NPC parent population,

and notably arrived at similar results [49�,50�]. By manu-

ally microdissecting the VZ/inner SVZ from the outer

SVZ before scRNA-seq, Pollen et al. were able to subse-

quently correlate gene expression with germinal zone

location and thus identify genes specifically enriched in

ORG [49�]. At the same time, Thomsen et al. developed a

protocol for light fixation, permeabilization, and fluores-

cent immunolabeling compatible with FACS purification

of NPC followed by scRNA-seq [50�]. Remarkably, both

efforts identified several of the same ORG-enriched

genes, including HOPX, FAM107A, and TNC. Neverthe-

less, the sample sizes of these studies are small compared

to those on the adult cortex, and much remains to be

done. It is important to note that single progenitor tran-

scriptomes are heavily influenced by cell cycle phase, and

probably also reflect dramatic changes in fate potential

over the course of cortical neurogenesis. Indeed, several

ORG-enriched genes were found to be expressed by VZ

NPC slightly earlier in development [49�]. Altogether,

there is a strong case for further developmental studies

not only including greater cell numbers but also sampling

a wide range of time-points, and applying new analysis

methods that can probe the dynamic development and

complex lineage relationships of the developing cortex.

Assessing validity and utility of in vitro models
by scRNA-seq
A key use of scRNA-seq will be to validate in vitro models

of human brain development and disease by comparing

the cell types and developmental dynamics of these

models to primary human tissues [51,56,57]. Cerebral

organoids are fast becoming a popular model for early

human brain development, but neither the variability

across iPSC lines or individual organoids nor the corre-

spondence of organoids to in vivo brain development is

yet fully understood. An scRNA-seq analysis of cerebral

organoids at 33–65 days post-differentiation identified

both dorsal and ventral telencephalic NPC and neurons,

as well as a few cells resembling those of the cortical hem

signaling center, an important source of patterning mor-

phogens [51]. Importantly, parallel analyses of organoids

and primary human fetal cortex found a remarkable

similarity in transcriptional programs of neurogenesis

and differentiation, the biggest difference being a paucity

of basal NPC in organoids (6% of cells in the organoids vs

34% in 12–13 weeks of gestation human cortex). Future

studies will be needed to determine whether this dis-

crepancy reflects the absence or underdevelopment of an

important progenitor niche in the organoids, or simply a

mismatch in the developmental stages of the organoids

and primary tissues compared in this study.

Challenges and opportunities for future
studies
Single-cell technologies and data analysis methods con-

tinue to improve rapidly, and will be invaluable in creating
Current Opinion in Neurobiology 2017, 42:9–16
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a complete census of cell types and lineage relationships in

the brain. We foresee future improvements leading to

great opportunities in four general areas.Methods to iso-

late cell populations from non-genetic model species will

be of particular importance. The FRISCR method [50�]
has great potential, but relies on suitable antibodies and

known cell type markers. Promising alternatives include

using fluorescent in situ hybridization or RT-PCR reac-

tions to sort cells on the abundance of mRNA transcripts

[58,59], and merging these methods with droplet-based

scRNA-seq will be hugely advantageous.In the model of

Patch-seq, protocols are sorely needed for sequencing

RNA from single cells previously or concurrently charac-

terized by other methods, for example, physiology, con-

nectivity, developmental lineage, or live imaging.

Methods to either maintain [60] or reconstruct [61,62]

spatial information in conjunction with scRNA-seq need

further development for application to mammalian brain

studies. Similarly, emerging methods to sequence DNA

and RNA from the same single cell [63,64] will provide

critical insights into the lineage relationships between cell

types, which are otherwise extremely difficult to assess in

human brain.New statistical models have been developed

to improve gene expression level estimates and quantify

heterogeneity in noisy single-cell data [65,66]. Further

development should be aimed at integrating these models

with advanced clustering and pseudotime methods.

Large-scale developmental studies will require new algo-

rithms for inferring cell type lineages from scRNA-seq

data collected at multiple real time points, while normal-

izing for cell cycle phase.Validation of putative novel

subtypes will be paramount, and will require innovative

approaches to visualize transcriptional dynamics in single

cells over time. The true test of cell type identity is

stability, and thus time-lapse live imaging of single-cell

transcription will be needed to definitively differentiate

transcriptional cell type from cell state.
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Single-cell RNAseq reveals cell adhesion molecule profiles in
electrophysiologically defined neurons. Proc Natl Acad Sci
2016, 113:E5222-E5231.

44. Markram H, Muller E, Ramaswamy S, Reimann MW, Abdellah M,
Sanchez CA, Ailamaki A, Alonso-Nanclares L, Antille N, Arsever S
et al.: Reconstruction and simulation of neocortical
microcircuitry. Cell 2015, 163:456-492.

45. Klein AM, Mazutis L, Akartuna I, Tallapragada N, Veres A, Li V,
Peshkin L, Weitz DA, Kirschner MW: Droplet barcoding for
single-cell transcriptomics applied to embryonic stem cells.
Cell 2015, 161:1187-1201.

46.
�

Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M,
Tirosh I, Bialas AR, Kamitaki N, Martersteck EM et al.: Highly
parallel genome-wide expression profiling of individual cells
using nanoliter droplets. Cell 2015, 161:1202-1214.

Droplet-based scRNA-seq developed by this group and by Klein et al. [45]
expands throughput by orders of magnitude, enabling higher sample
sizes needed for heterogeneous tissues like cortex. Here, a novel analysis
in retina also provides a template for unbiased sampling of tissues that
contain both highly abundant and very rare cell types of interest.

47. Masland RH: The neuronal organization of the retina. Neuron
2012, 76:266-280.

48. Telley L, Govindan S, Prados J, Stevant I, Nef S, Dermitzakis E,
Dayer A, Jabaudon D: Sequential transcriptional waves direct
the differentiation of newborn neurons in the mouse
neocortex. Science 2016, 351:1443-1446.

49.
�

Pollen AA, Nowakowski TJ, Chen J, Retallack H, Sandoval-
Espinosa C, Nicholas CR, Shuga J, Liu SJ, Oldham MC, Diaz A
et al.: Molecular identity of human outer radial glia during
cortical development. Cell 2015, 163:55-67.

This study and Thomsen et al. [50�] used distinct experimental designs to
arrive at similar results searching for genes enriched in known subtypes of
human fetal cortex progenitors. These authors performed extensive
validations, and find important developmental differences that highlight
the need for larger studies across more ages.
Current Opinion in Neurobiology 2017, 42:9–16

http://refhub.elsevier.com/S0959-4388(16)30195-7/sbref0435
http://refhub.elsevier.com/S0959-4388(16)30195-7/sbref0435
http://refhub.elsevier.com/S0959-4388(16)30195-7/sbref0440
http://refhub.elsevier.com/S0959-4388(16)30195-7/sbref0440
http://refhub.elsevier.com/S0959-4388(16)30195-7/sbref0440
http://refhub.elsevier.com/S0959-4388(16)30195-7/sbref0440
http://dx.doi.org/10.1093/cercor/bhw040
http://dx.doi.org/10.1093/cercor/bhw040
http://refhub.elsevier.com/S0959-4388(16)30195-7/sbref0450
http://refhub.elsevier.com/S0959-4388(16)30195-7/sbref0450
http://refhub.elsevier.com/S0959-4388(16)30195-7/sbref0450
http://refhub.elsevier.com/S0959-4388(16)30195-7/sbref0450
http://refhub.elsevier.com/S0959-4388(16)30195-7/sbref0455
http://refhub.elsevier.com/S0959-4388(16)30195-7/sbref0455
http://refhub.elsevier.com/S0959-4388(16)30195-7/sbref0455
http://refhub.elsevier.com/S0959-4388(16)30195-7/sbref0455
http://refhub.elsevier.com/S0959-4388(16)30195-7/sbref0460
http://refhub.elsevier.com/S0959-4388(16)30195-7/sbref0460
http://refhub.elsevier.com/S0959-4388(16)30195-7/sbref0460
http://refhub.elsevier.com/S0959-4388(16)30195-7/sbref0460
http://refhub.elsevier.com/S0959-4388(16)30195-7/sbref0465
http://refhub.elsevier.com/S0959-4388(16)30195-7/sbref0465
http://refhub.elsevier.com/S0959-4388(16)30195-7/sbref0465
http://refhub.elsevier.com/S0959-4388(16)30195-7/sbref0470
http://refhub.elsevier.com/S0959-4388(16)30195-7/sbref0470
http://refhub.elsevier.com/S0959-4388(16)30195-7/sbref0470
http://refhub.elsevier.com/S0959-4388(16)30195-7/sbref0470
http://refhub.elsevier.com/S0959-4388(16)30195-7/sbref0475
http://refhub.elsevier.com/S0959-4388(16)30195-7/sbref0475
http://refhub.elsevier.com/S0959-4388(16)30195-7/sbref0475
http://refhub.elsevier.com/S0959-4388(16)30195-7/sbref0475
http://refhub.elsevier.com/S0959-4388(16)30195-7/sbref0480
http://refhub.elsevier.com/S0959-4388(16)30195-7/sbref0480
http://refhub.elsevier.com/S0959-4388(16)30195-7/sbref0480
http://refhub.elsevier.com/S0959-4388(16)30195-7/sbref0485
http://refhub.elsevier.com/S0959-4388(16)30195-7/sbref0485
http://refhub.elsevier.com/S0959-4388(16)30195-7/sbref0485
http://refhub.elsevier.com/S0959-4388(16)30195-7/sbref0485
http://refhub.elsevier.com/S0959-4388(16)30195-7/sbref0485
http://refhub.elsevier.com/S0959-4388(16)30195-7/sbref0490
http://refhub.elsevier.com/S0959-4388(16)30195-7/sbref0490
http://refhub.elsevier.com/S0959-4388(16)30195-7/sbref0490
http://refhub.elsevier.com/S0959-4388(16)30195-7/sbref0490
http://refhub.elsevier.com/S0959-4388(16)30195-7/sbref0490
http://refhub.elsevier.com/S0959-4388(16)30195-7/sbref0495
http://refhub.elsevier.com/S0959-4388(16)30195-7/sbref0495
http://refhub.elsevier.com/S0959-4388(16)30195-7/sbref0495
http://refhub.elsevier.com/S0959-4388(16)30195-7/sbref0495
http://refhub.elsevier.com/S0959-4388(16)30195-7/sbref0500
http://refhub.elsevier.com/S0959-4388(16)30195-7/sbref0500
http://refhub.elsevier.com/S0959-4388(16)30195-7/sbref0500
http://refhub.elsevier.com/S0959-4388(16)30195-7/sbref0500
http://refhub.elsevier.com/S0959-4388(16)30195-7/sbref0505
http://refhub.elsevier.com/S0959-4388(16)30195-7/sbref0505
http://refhub.elsevier.com/S0959-4388(16)30195-7/sbref0505
http://refhub.elsevier.com/S0959-4388(16)30195-7/sbref0505
http://refhub.elsevier.com/S0959-4388(16)30195-7/sbref0510
http://refhub.elsevier.com/S0959-4388(16)30195-7/sbref0510
http://refhub.elsevier.com/S0959-4388(16)30195-7/sbref0510
http://refhub.elsevier.com/S0959-4388(16)30195-7/sbref0515
http://refhub.elsevier.com/S0959-4388(16)30195-7/sbref0515
http://refhub.elsevier.com/S0959-4388(16)30195-7/sbref0515
http://refhub.elsevier.com/S0959-4388(16)30195-7/sbref0515
http://refhub.elsevier.com/S0959-4388(16)30195-7/sbref0520
http://refhub.elsevier.com/S0959-4388(16)30195-7/sbref0520
http://refhub.elsevier.com/S0959-4388(16)30195-7/sbref0520
http://refhub.elsevier.com/S0959-4388(16)30195-7/sbref0520
http://refhub.elsevier.com/S0959-4388(16)30195-7/sbref0525
http://refhub.elsevier.com/S0959-4388(16)30195-7/sbref0525
http://refhub.elsevier.com/S0959-4388(16)30195-7/sbref0525
http://refhub.elsevier.com/S0959-4388(16)30195-7/sbref0525
http://refhub.elsevier.com/S0959-4388(16)30195-7/sbref0530
http://refhub.elsevier.com/S0959-4388(16)30195-7/sbref0530
http://refhub.elsevier.com/S0959-4388(16)30195-7/sbref0530
http://refhub.elsevier.com/S0959-4388(16)30195-7/sbref0530
http://refhub.elsevier.com/S0959-4388(16)30195-7/sbref0535
http://refhub.elsevier.com/S0959-4388(16)30195-7/sbref0535
http://refhub.elsevier.com/S0959-4388(16)30195-7/sbref0535
http://refhub.elsevier.com/S0959-4388(16)30195-7/sbref0535
http://refhub.elsevier.com/S0959-4388(16)30195-7/sbref0540
http://refhub.elsevier.com/S0959-4388(16)30195-7/sbref0540
http://refhub.elsevier.com/S0959-4388(16)30195-7/sbref0540
http://refhub.elsevier.com/S0959-4388(16)30195-7/sbref0540
http://refhub.elsevier.com/S0959-4388(16)30195-7/sbref0540
http://refhub.elsevier.com/S0959-4388(16)30195-7/sbref0545
http://refhub.elsevier.com/S0959-4388(16)30195-7/sbref0545
http://refhub.elsevier.com/S0959-4388(16)30195-7/sbref0545
http://refhub.elsevier.com/S0959-4388(16)30195-7/sbref0545
http://refhub.elsevier.com/S0959-4388(16)30195-7/sbref0550
http://refhub.elsevier.com/S0959-4388(16)30195-7/sbref0550
http://refhub.elsevier.com/S0959-4388(16)30195-7/sbref0550
http://refhub.elsevier.com/S0959-4388(16)30195-7/sbref0550
http://refhub.elsevier.com/S0959-4388(16)30195-7/sbref0555
http://refhub.elsevier.com/S0959-4388(16)30195-7/sbref0555
http://refhub.elsevier.com/S0959-4388(16)30195-7/sbref0555
http://refhub.elsevier.com/S0959-4388(16)30195-7/sbref0555
http://refhub.elsevier.com/S0959-4388(16)30195-7/sbref0560
http://refhub.elsevier.com/S0959-4388(16)30195-7/sbref0560
http://refhub.elsevier.com/S0959-4388(16)30195-7/sbref0560
http://refhub.elsevier.com/S0959-4388(16)30195-7/sbref0560
http://refhub.elsevier.com/S0959-4388(16)30195-7/sbref0565
http://refhub.elsevier.com/S0959-4388(16)30195-7/sbref0565
http://refhub.elsevier.com/S0959-4388(16)30195-7/sbref0570
http://refhub.elsevier.com/S0959-4388(16)30195-7/sbref0570
http://refhub.elsevier.com/S0959-4388(16)30195-7/sbref0570
http://refhub.elsevier.com/S0959-4388(16)30195-7/sbref0570
http://refhub.elsevier.com/S0959-4388(16)30195-7/sbref0575
http://refhub.elsevier.com/S0959-4388(16)30195-7/sbref0575
http://refhub.elsevier.com/S0959-4388(16)30195-7/sbref0575
http://refhub.elsevier.com/S0959-4388(16)30195-7/sbref0575


16 Developmental neuroscience
50.
�

Thomsen ER, Mich JK, Yao Z, Hodge RD, Doyle AM, Jang S,
Shehata SI, Nelson AM, Shapovalova NV, Levi BP et al.: Fixed
single-cell transcriptomic characterization of human radial
glial diversity. Nat Methods 2016, 13:87-93.

In addition to identifying a novel transcriptional signature of outer radial
glial progenitors in human fetal cortex, this work presents a new method
for isolating specific cell types of interest from non-genetic models, which
will be critical for future scRNA-seq work in primates and other species.

51. Camp JG, Badsha F, Florio M, Kanton S, Gerber T, Wilsch-
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