
RESEARCH ARTICLE

De novo and inherited private variants in

MAP1B in periventricular nodular heterotopia

Erin L. Heinzen1*, Adam C. O’Neill2, Xiaolin Zhu1, Andrew S. Allen3,4, Melanie Bahlo5,6,

Jamel Chelly7,8, Ming Hui Chen9, William B. Dobyns10,11, Saskia Freytag12, Renzo Guerrini13,

Richard J. Leventer14,15,16, Annapurna Poduri17, Stephen P. Robertson2, Christopher

A. Walsh18,19,20, Mengqi Zhang4,21, for the Epi4K Consortium¶, Epilepsy Phenome/Genome

Project¶

1 Institute for Genomic Medicine, Columbia University Medical Center, New York, New York, United States of

America, 2 Department of Women’s and Children’s Health, Dunedin School of Medicine, University of Otago,

Dunedin, New Zealand, 3 Center for Statistical Genetics and Genomics, Duke University Medical Center,

Durham, North Carolina, United States of America, 4 Department of Biostatistics and Bioinformatics, Duke

University, Durham, North Carolina, United States of America, 5 Population Health and Immunity Division,

The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia, 6 Department of

Medical Biology, School of Mathematics and Statistics, University of Melbourne, Parkville, Victoria, Australia,
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Abstract

Periventricular nodular heterotopia (PVNH) is a malformation of cortical development

commonly associated with epilepsy. We exome sequenced 202 individuals with sporadic

PVNH to identify novel genetic risk loci. We first performed a trio-based analysis and identi-

fied 219 de novo variants. Although no novel genes were implicated in this initial analysis,

PVNH cases were found overall to have a significant excess of nonsynonymous de novo

variants in intolerant genes (p = 3.27x10-7), suggesting a role for rare new alleles in genes

yet to be associated with the condition. Using a gene-level collapsing analysis comparing

cases and controls, we identified a genome-wide significant signal driven by four ultra-

rare loss-of-function heterozygous variants in MAP1B, including one de novo variant. In at

least one instance, the MAP1B variant was inherited from a parent with previously undiag-

nosed PVNH. The PVNH was frontally predominant and associated with perisylvian
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polymicrogyria. These results implicate MAP1B in PVNH. More broadly, our findings sug-

gest that detrimental mutations likely arising in immediately preceding generations with

incomplete penetrance may also be responsible for some apparently sporadic diseases.

Author summary

Almost 20 years ago the first gene responsible for periventricular nodular heterotopia

(PVNH), a disorder that leads to abnormal migration of neurons during fetal brain devel-

opment, was discovered. Since that time additional genes have been identified, but collec-

tively they only explain a minority of cases. In this work we sought to further elucidate the

genetic basis of this disorder using exome sequencing of 202 individuals with PVNH. We

found a clear role for de novo mutations in PVNH, although with this analysis alone we

were unable to pinpoint which of the de novo mutations in novel genes caused the disease.

One patient was found to have a de novo variant in MAP1B, a gene that encodes a protein

that plays a role at several key steps of brain development. With further analysis of the

exome sequence data we found an additional three cases with a very rare inherited variant

in MAP1B. This pattern is not expected to occur by chance and therefore indicates that

these variants are likely responsible for the PVNH in these patients. Further strengthing

the association of MAP1B in PVNH, all of the patients with a MAP1B variant had a similar

brain abnormality, and at least one of the parents who transmitted the variant to their

child was also similarly affected. This work adds to a growing list of genes responsible for

PVNH, illuminates new genes involved in brain development, and importantly informs

us about the types of genetic variants involved in PVNH.

Introduction

Malformations of cortical development are phenotypically heterogeneous and frequently asso-

ciated with epilepsy, intellectual disability and congenital neurological deficits [1]. Periventri-

cular nodular heterotopia (PVNH) is one such malformation where a population of neurons

fails to migrate to the cerebral cortex and instead adopt heterotopic positions along their sites

of origin–adjacent to the lateral ventricles [2]. Ten loci [FLNA, ARFGEF2, FAT4, DCHS1,

EML1, NEDD4L, INTS8, EML1, AKT3, MCPH1 and C6orf70 (also known as ERMARD)] are

currently implicated in the causation of PVNH [3–11]. Variants in these genes explain approx-

imately 25% of sporadic instances of the brain malformation, with variants in FLNA being the

most frequently found [3–10]. Despite only a small number of genes identified to date, germ-

line genetic variation is thought to explain a significant fraction of patients, particularly in

light of the often bilateral symmetric presentation and the lack of evidence for extrinsic etiolo-

gies [12–14].

To further characterize the genetic bases of PVNH, we exome sequenced 202 trios with spo-

radic PVNH and performed two analyses (Methods). First, we executed a trio-based approach

to search for de novo risk variants in the patient population. Given the phenotypic heterogene-

ity of PVNH, ranging from mild, sometimes subclinical, to very severe [15, 16], and the pres-

ence of X-linked FLNA-positive cases in both sporadic and inherited PVNH, we also sought to

evaluate the role of risk alleles agnostic to the mode of inheritance by performing a gene-level

case-control collapsing analysis of 196 probands (excluding six individuals sequenced from

lymphoblastoid cell line DNA) and controls. In the collapsing analysis, we searched for
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enrichment of rare, putatively deleterious variants (inherited or de novo), within the protein-

coding sequence of individual genes [17, 18]. The results of our analyses specifically pin-

pointed de novo and inherited variants in MAP1B in PVNH, and more broadly implicate

ultra-rare, likely recently acquired variation in the genetic architecture of PVNH. Finally,

given the challenges associated with distinguishing disease-relevant variations from back-

ground variation in genetically heterogeneous conditions, we utilized human brain-specific

transcriptomic data [19, 20] to undertake a systems genetic analysis aimed at further organiz-

ing candidates for future investigation.

Results

Given the prominent role for de novo variation in severe, sporadic neurodevelopmental disor-

ders [21–26], we first identified de novo variants within trios using GATK multi-sample calling

as described previously [21, 27]. A total of 219 de novo variants were identified in the 202 trios

(1.1 per trio, Methods, S1 Table).

Among these de novo variants, nine were located in FLNA, a previously identified PVNH

gene (Table 1)[3]. Consistent with the known role of FLNA in PVNH, observing nine de novo
variants in FLNA is extremely unlikely to occur by chance (p = 3.4x10-23, FitDNM method

[28]). A de novo variant was also identified in NEDD4L; the genetic findings in this same

patient were previously reported in Broix et al [7]. No de novo variants were detected in

C6orf70 (also known as ERMARD), a previously identified dominant PVNH gene [6]. Three

additional genes had multiple de novo variants in unrelated individuals (Table 1), including

three de novo variants in CHD5 and two each in UGGT1 and PLXNC1. CHD5 did not have a

statistically significant excess of de novo variants in a cohort of this size compared to that

expected based on the mutability and size of the gene, as assessed using the FitDNM method

[28] (p = 1.6 x 10−5). Because we do not have estimates of mutation rates for insertion-deletion

variants, and both UGGT1 and PLXNC1 harbored one single nucleotide substitution and one

insertion-deletion variant, we were not able to formally test for enrichment of de novo variants

in these genes using the FitDNM method.

We next evaluated if de novo variation across the cohort had a distinct profile compared to

controls using two orthogonal approaches. First, we performed a hot-zone analysis using pre-

viously described methods comparing profiles of de novo variation predicted to alter the level

or activity of a protein that is encoded by a gene that has less than expected functional variation

in the population (intolerant gene) in cases and controls [22] (Methods). We found significant

enrichment of hot-zone de novo variants in PVNH cases (30.4%) compared to controls (9.6%)

(p = 0.001). Removing the disease-causing FLNA variants from this analysis, a significant

enrichment remained in PVNH cases (25%) compared to controls [odds ratio = 3.31 (95% CI:

1.22–9.08), p = 0.01]. Second, to further validate the observations from the hot-zone analysis

comparing cases to controls, we also developed a likelihood model analysis to evaluate if the

distribution of single nucleotide de novo variants in affected individuals differs significantly

from that expected in the general population using a modified version of previously described

methods [22, 27] (S1 Text). The model includes parameters estimating the relative risk associ-

ated with types of de novo variants and the proportion of the exome that confers PVNH risk.

Given the results of the hot-zone analysis we specifically focused on analyses of the distribution

of nonsynonymous de novo variants in the 4,317 intolerant genes [genes with a Residual Varia-

tion Intolerance Score (RIVS score) in the lowest 25 th percentile]. We observed a highly signif-

icant shift in the distribution from expectation (p = 3.27x10-7). Further, point estimates from

the de novo mutation architecture model suggest that <1% of intolerant genes are involved in

PVNH risk and that each individual variant is highly penetrant [γ (relative risk): >4k] (S1

De novo and inherited private variants in MAP1B in PVNH
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Fig). However, we note that the wide confidence intervals on the parameter estimates suggest

considerable uncertainty in these estimates and that much larger samples sizes will be needed

to refine estimates of genetic architecture parameters in PVNH.

Since PVNH can have highly variable clinical presentations, ranging from subclinical to

severe, we hypothesized that in some cases the risk alleles may be inherited from clinically

unaffected parents, as is well recognized to occur in FLNA-associated PVNH. To address this

hypothesis, we performed an association test evaluating for enrichment of rare alleles across

individual genes in cases compared to controls using a gene-based collapsing analysis [17]. We

started with variant calls from exome sequence data generated from 196 PVNH cases (exclud-

ing the six samples where sequencing was from DNA extracted from a lymphoblastoid cell

line) and 13,364 controls selected from other studies and non-enriched for neurodevelopmen-

tal, neuropsychiatric, or severe pediatric diseases. All ethnicities were included in the analysis

and we ensured approximately equal proportions of ethnicities among cases and controls.

After a relatedness check and principal component analysis (Methods, S2 Fig), a total of 196

cases and 13,151 controls remained for association analysis.

To identify genes associated with PVNH under the case-control association analysis frame-

work, we performed a genome-wide search for an over- or under-representation of “qualifying

variants” in protein-coding genes in cases compared to controls—looking for genes where rare

alleles confer risk or protection, respectively (Methods). Under a loss-of-function-only (LoF-

only) model, where qualifying variants are required to be LoF variants (Methods), two genes

(FLNA and MAP1B) showed enrichment of qualifying variants in PVNH patients with genome-

wide significant p-values (Table 2, Fig 1). As a negative control, we also evaluated synonymous

variants and found no enrichment of synonymous variants in cases or controls (S3 Fig). SON
also had genome-wide significant enrichment of qualifying variants in cases, however this signal

was driven by four de novo variants that were later found to be sequencing artifacts.

Table 1. Genes with multiple de novo variants.

Gene Proband ID variant id

(chr-position-ref-var,

hg19)

ExAC

v0.3.1

MAF

RefSeq Transcript

ID

Function CDS

position

Protein

position

Amino acid

substitution

Polyphen2

CHD5 pvhnd29397ly1 1-6185252-G-A 0.00004 NM_015557.2 synonymous 4302 1434 N -

CHD5 pvhcw8001bvg1 1-6219435-C-G 0 NM_015557.2 missense 348 116 K/N benign

CHD5 pvhit130Lbou1 1-6166767-C-A 0 NM_015557.2 missense 5651 1884 R/L probably_damaging

FLNA pvhnd39214nu1 X-153592477-G-C 0 NM_001110556.1 stop_gained 2193 731 Y/� -

FLNA pvhcw14103bvj1 X-153590679-G-A 0 NM_001110556.1 stop_gained 2587 863 R/� -

FLNA pvhnd32846lz1 X-153590679-G-A 0 NM_001110556.1 stop_gained 2587 863 R/� -

FLNA pvhnd39654ajz1 X-153589918-G-A 0 NM_001110556.1 stop_gained 2965 989 Q/� -

FLNA pvhnd26332me1 X-153586868-G-A 0 NM_001110556.1 stop_gained 4543 1515 R/� -

FLNA pvhnd29397ly1 X-153593004-G-A 0 NM_001110556.1 stop_gained 1912 638 Q/� -

FLNA pvhnd25061mw1 X-

153588557-C-CCCCG

0 NM_001110556.1 frameshift indel 3605–

3606

1202 - -

FLNA pvhnd37807nj1 X-153599348-ATCT-A 0 NM_001110556.1 Inframe indel 263–265 88–89 KM/M -

FLNA pvhcw8001bvg1 X-153581372-C-A 0 NM_001456.3 missense 6199 2067 A/S probably_damaging

(0.986)

PLXNC1 pvhnd21601lu1 12-94658948-TAC-T 0 NM_005761.2 frameshift indel 3545–

3546

1182 - -

PLXNC1 pvhit256Jbpb1 12-94648646-C-T 0.00001 NM_005761.2 missense_variant 2965 989 R/W probably_damaging

(0.999)

UGGT1 pvhnd27930mf1 2-128890752-CG-C 0 NM_020120.3 Frameshift indel 1416 472 - -

UGGT1 pvhnd40500bij1 2-128855098-A-C 0 NM_020120.3 missense 154 52 T/P benign (0.366)

https://doi.org/10.1371/journal.pgen.1007281.t001
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Remarkably, MAP1B, a gene not previously known to be associated with PVNH, was the

second most significant gene (following FLNA) owing to the presence of LoF qualifying vari-

ants in 4 of the 196 cases, and the absence of a LoF qualifying variant among 13,151 controls

(Table 2). When we expanded the qualifying variants to include “probably damaging” mis-

sense variants (Methods), FLNA was the only significant association signal due to the addi-

tional contribution of missense qualifying variants, which have previously been demonstrated

to be pathogenic in PVNH patients (Table 2). However, MAP1B became less significant

because missense qualifying variants were found in 15 of the 13,151 controls and none of the

cases (Table 2, S3 Fig). We further examined each of the four MAP1B LoF qualifying variants

identified in the four PVNH cases. All four were heterozygous (Table 3), including one de

Fig 1. Quantile-quantile plot for gene-level association tests interrogating LoF variants. Black dots represent

transformed p values against the expected transformed p values for genes with qualifying LoF variants. The red dot

corresponds to the p value associated with SON however all four variants driving this signal were found to be false

positives with Sanger sequencing. The red line indicates the expectation under the null model of no effect on risk.

https://doi.org/10.1371/journal.pgen.1007281.g001

Table 2. Top associations from the gene-level case-control collapsing analyses.

LoF-only

Case carrier %Case carrier Control carrier %Control carrier Fisher’s exact test p-value Rank of p-value among all genes tested

FLNA 7 3.57% 1 0.008% 1.1×10−12� 1/18405

MAP1B 4 2.04% 0 0% 4.5×10−8� 2/18405

LoF + missense (“probably damaging”)

Case carrier %Case carrier Control carrier %Control carrier Fisher’s exact test p-value Rank of p-value among all genes tested

FLNA 12 6.12% 55 0.42% 2.1×10−10� 1/18405

MAP1B 4 2.04% 15 0.11% 1.5×10−4 2/18405

�Genome-wide significant (Methods).

https://doi.org/10.1371/journal.pgen.1007281.t002

De novo and inherited private variants in MAP1B in PVNH

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007281 May 8, 2018 5 / 23

https://doi.org/10.1371/journal.pgen.1007281.g001
https://doi.org/10.1371/journal.pgen.1007281.t002
https://doi.org/10.1371/journal.pgen.1007281


novo and three inherited variants. None of the four cases had been resolved by a genetic diag-

nosis (e.g., FLNA or NEDD4L variants). All four variants are predicted to cause early prema-

ture truncation to the microtubule-associated protein 1B, which is 2,468 amino acids in length

(Table 3, Fig 2). MAP1B is very intolerant to standing functional variation with an ExAC-

based RVIS percentile of 2.27% and only 12 LOF variants (20 alleles) observed in the ExAC

and gnomAD databases combined [29]. It is also a LoF-depleted gene achieving a ExAC-based

FDR of 1.53x10-11 for preferential depletion of LoF variants [30] and a probability of being

LoF intolerant (pLI) score of one [29, 31]. One additional de novo LOF variant in MAP1B was

identified in a patient reported to have a range of phenotypes including an abnormality of the

nervous system in the Deciphering Developmental Disorders Study (Fig 2, p.

(Glu659Lysfs�22))[32], but MRI data that would allow for a diagnosis of PVNH was unavail-

able. All MAP1B variants were confirmed to be present with Sanger sequencing and the inheri-

tance patterns were correctly inferred from the exome sequence data. MAP1B encodes a

neuronal microtubule-associated protein that plays a key role in neurogenesis and neuronal

migration through its effects on microtubule assembly and axon formation [33–35].

All of our patients with a MAP1B variant have anterior PVNH, bilateral and symmetric in

three, and two of the four have deep perisylvian / insular polymicrogyria (S2 Table, S4 Fig, Fig

3). The pattern of PVNH is distinctive in that the nodules are frontal-predominant. This com-

pares to the typical FLNA-associated PVNH in which the nodules are maximal along the bod-

ies of the lateral ventricles, and the posterior or infrasylvian form of PVNH in which the

nodules are maximal along the atria and temporal horns [36]. Seizures, cognitive impairment,

Table 3. MAP1B LoF qualifying variants identified in PVNH patients.

Variant ID

(chr-position-ref-var,

hg19)

Proband ID Parental origin Ethnicity (self-declared, inferred

from genetic data)

Variant/reference depth (proband):

(transmitting parent)

Annotation�

5-71490089-C-T pvhnd29281lw1 de novo American Indian—Alaska Native/

European

63/70: NA c.907C>T;p.(Arg303�)

5-71490776-C-T pvhcw12701bvi1 inherited from

father

European/European 38/31: 26/29 c.1594C>T;p.

(Gln532�)

5-71492498-C-T pvhnz9000cfc1 inherited from

mother

Unknown/European 43/39: 35/26 c.3316C>T;p.

(Arg1106�)

5-71489999-GC-G pvhit1238Pbti1 inherited from

father

European/European 44/50: 47/55 c.818delC;p.

(Leu274Cysfs�4)

�Annotations are based on the canonical transcript NM_005909.3.

https://doi.org/10.1371/journal.pgen.1007281.t003

Fig 2. Distribution of MAP1B LOF alleles in PVNH cases (red dots), in individuals from ExAC and gnomAD databases (blue dots with number of alleles

observed represented by number of dots running vertically at this site), and in the Deciphering Developmental Disorders case (orange dot). A Sanger confirmed

de novo variant is indicated with a white dot in the circle.

https://doi.org/10.1371/journal.pgen.1007281.g002
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and other dysmorphic features were variable across the four patients. Only one of the three

transmitting parents (mother of pvhnz9000cfc1) reported having possible neurological symp-

toms and was available for additional clinical evaluation. Interestingly, both the mother and

child in this family had similar neuroimaging findings, consisting of bilateral anterior PVNH

and deep perisylvian and insular polymicrogyria (Fig 3), although the extent of the brain mal-

formation was much milder in the mother. This distinctive phenotype in both mother and

child with the same MAP1B variant, and the rareness of the phenotype in patients with PVNH

[37], further implicates MAP1B in PVNH. The other two parents from whom probands in-

herited variants in MAP1B did not report neurological symptoms and had not undergone

neuroimaging.

We next evaluated if we could detect additional association signals by looking across sets of

genes comprising a pathway. To do so, we first removed the two marginally significant genes

(FLNA and MAP1B) as well as the gene generating an artifactual signal (SON) from these anal-

yses. We interrogated the 10,705 pathways defined in the GSEA Hallmark and C2 Gene Sets,

and Gene Ontology defined gene sets [38–40]. To assess whether there was any evidence of

residual non-null signal across genes in each pathway we used a higher criticism approach

(Methods) [41] that is especially sensitive to detecting low-level signals across a series of genes.

No pathway was significantly associated with PVNH status after removing the gene-level

Fig 3. Brain MRI of subjects pvhnz9000cfc1 (top) and mother (bottom). Images are coronal T1-weighted (left

column) and axial T1-weighted (right column). The images all show bilateral periventricular nodular grey matter

heterotopia maximal in the frontal regions (black arrows). The axial images show over-folded cortex in the deep

perisylvian/insular region on the right consistent with polymicrogyria (white arrows).

https://doi.org/10.1371/journal.pgen.1007281.g003
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signals driven by FLNA and MAP1B variants. These analyses suggest that if additional associa-

tion signal is present in the dataset, we are either underpowered to detect it or the relevant

pathways are not captured amongst the gene sets evaluated.

Two biallelic risk models, one including LoF only and one LoF and “probably damaging”

missense variants, were also evaluated considering a combination of both recessive or com-

pound heterozygous qualifying variants using a case-control collapsing approach. No statisti-

cally significant association signals were detected and no gene had more than two qualifying

genotypes in PVNH cases. No disease-causing biallelic genotypes were detected in the four

known recessive PNVH genes ARFGEF2, FAT4, DCHS1, INTS8,MCPH1 or EML1. Newly

recessive, compound heterozygous, and newly hemizygous genotypes identified in the PVNH

trios are provided in S3 and S4 Tables.

Recently, it has been shown that epileptic encephalopathy genes tend to be co-expressed in

the brain during development, and that, for this epilepsy phenotype, identifying genes harbor-

ing a single de novo mutation in a trio-based study that are transcriptionally co-regulated with

known disease genes can effectively pinpoint genes that will be associated with the phenotype

in larger cohorts [19, 20]. Both the hot-zone and the architecture analyses suggest that there

are additional pathogenic de novo variants beyond the de novo variant in MAP1B and NEDD4L
and those found in FLNA. In order to nominate candidate PVNH genes amongst the set with a

de novo mutation in one of the 202 PVNH cases evaluated in this study, we evaluated human

brain development developmental co-expression patterns of de novo mutation carrying genes

with known PVNH genes. Since the prioritization approach will be most effective in cases

where known genes tend to be co-expressed, we first evaluated if a set of human and rodent

PVNH genes [(n = 14) Methods], exhibit greater co-expression than random sets of 14 genes

during brain development (Methods). We showed that, among 1,000 randomly selected

14-gene sets, PVNH genes, including MAP1B, tend to have higher correlation coefficients when

evaluating all possible two gene correlations within the 14 PVNH gene set (S5 Fig)[42–44]. We

next evaluated the prioritization procedure (Methods) using a leave-one-out approach (S2 Text)

where a known PVNH gene is removed from the list and evaluated to see if it would be subse-

quently prioritized. We found this approach was able to successfully reprioritize more PVNH

genes than expected by chance (S5 Table). Based on these analyses, we compiled a list of all

genes harboring at least one de novo variant predicted to alter the encoded protein and excluded

those occurring in any of the 14 known PVNH loci to identify the genes that are co-expressed

with known PVNH genes (S2 Text). Using this approach, 14/107 candidate genes exceeded the

empirical significance cut-off in both transcriptomic datasets analyzed. These genes included

LRIG3, MBNL1, ARID4B, NLGN1, KIFC3, SV2A, ADAM17,KIFAP3, FUBP3, ARHGAP35,

PI4KA, MCM8, EDEM3, and DCX (S6 Table). Co-expression heatmaps showing the modules of

co-regulation of known and prioritized PVNH genes are provided in Fig 4. The patterns of co-

expression of these candidate PVNH genes with human PVNH genes across development are

also provided in S6 Fig. These 14 genes harboring de novo variants in our 202 trios that co-

express with known PVNH genes should be considered candidate PVNH genes, particularly

those with hot-zone variants (MBNL1, ARID4B, NLGN1, ARHGAP35, EDEM3 and DCX).

Discussion

The PVNH cohort of 202 cases analyzed in this study was assembled with the goal of identify-

ing novel variants and genes for this disorder. In this cohort we sought to identify disease-

causing de novo variants considering the standard de novo variant paradigm in sporadic dis-

ease, and also rare inherited risk alleles since PVNH can exist in patients with subtle clinical or

purely radiological presentations.
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Using a trio approach, no gene in this study showed a genome-wide significant enrichment

of de novo variants, other than FLNA, an already established PVNH gene. Despite this, results

from our hot-zone analyses estimate that approximately 15 patients (7.4% of the cohort) har-

bor a non-FLNA de novo pathogenic variant, despite our inability in this small cohort to pin-

point these specific variants. This is further supported by the highly significant enrichment of

nonsynonymous de novo variants in intolerant genes in the architecture analysis.

While we cannot pinpoint the exact pathogenic de novo variants outside of those in known

PVNH genes, we suspect that a number of genes harbor pathogenic variants based either on

meeting the hot-zone criteria or showing evidence of co-expression in the brain with known

PVNH genes during the critical developmental time period. In total we identified 35 variants

meeting the hot-zone criteria in 29 genes (S1 Table). Among these hot-zone de novo variants

was one located in MAP1B, a gene implicated in this study through the gene-level collapsing

analysis. CHD5 was also found to harbor one hot-zone de novo variant, along with one synony-

mous de novo variant found in 0.004% of controls (S1 Table) and one missense variant pre-

dicted to be benign by Polyphen-2. Despite observing three de novo variants in CHD5, this

pattern could occur by chance accounting for the mutability, predicted impact of the variants,

and the size of the gene in a cohort of this size. However, this is an interesting candidate gene

given what is known about the biological role of this gene. CHD5 encodes the chromatin-

remodeling protein chromodomain helicase DNA binding protein 5, which binds DNA and

regulates transcription[45, 46]. CHD5 expression is restricted to the brain where it activates

genes promoting neuron terminal differentiation. Acute knockdown of CHD5 within the

developing mouse cortex, via in utero electroporation, impairs radial migration and causes a

Fig 4. Ordered correlation matrices for the PVNH query and the fourteen loci significantly co-expressing within this node. Pairwise Pearson’s correlation

represented as a matrix between (a) pairs of the 14 genes within the PVNH gene set (Methods) and (b) the human PVNH query plus the 14 genes whose co-regulatory

patterns significantly exceed the eFDR in both the Kang and Miller transcriptomic datasets. Genes are ordered according to hierarchical clustering, with the most

positive (+1) and negative (-1) co-regulatory interactions represented as blue and red squares, respectively.

https://doi.org/10.1371/journal.pgen.1007281.g004
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failure of cells to reach the cortical plate[47]. Additional studies will be needed to confirm or

disprove this candidate association.

Further complementing the hot-zone analyses, we also used brain-specific human tran-

scriptomic resources to nominate candidate genes based on their co-regulatory expression pat-

terns with known PVNH genes. Interestingly, known disease-causing PVNH genes form

distinct patterns of co-expression with loci that produce similar phenotypes, suggesting the co-

expression networks outlined here are supportive of a common pathway. For example, the

expression patterns of FLNA and INTS8 are highly correlated across development (Fig 4).

Pathogenic variants in FLNA produce a phenotype of symmetrically distributed heterotopia

predominantly lining the anterior horns and ventricular bodies of the lateral ventricles. Hypo-

plasia of the cerebellar vermis and posterior fossa cysts are common accompaniments [12]. A

very similar clinical phenotype is produced by variants in INTS8 [10]. Although the genes sig-

nificantly co-expressing with the query PVNH set should be viewed only as candidate PVNH

loci several are also hot-zone variants, further reinforcing their potential role in PVNH.

Using a gene-level collapsing analysis to assess enrichment for both inherited and de novo
alleles in PVNH cases, we identified a significant enrichment of loss-of-function variants in

MAP1B in cases compared to controls, allowing us to clearly implicate this gene in PVNH risk.

Interestingly, three of the four MAP1B variants driving the association signal were found to be

transmitted from a unaffected parent, explaining why it was not identified in the initial trio

analysis. None of the three inherited MAP1B variants showed evidence of mosaicism based on

the number of reads supporting the variant compared to reference (Table 3).

MAP1B, encoding microtubule associated protein 1B, is involved in regulating both micro-

tubule and actin dynamics. Specifically, MAP1B is encoded as a single peptide with one cleavage

site located near the C-terminus. The subsequent cleavage of MAP1B induces the production of

a heavy and light chain that can both interact with microtubules [48]. Neurons lacking MAP1B
have reduced Rac1 and Cdc42 activity, with a concomitant increase in RhoA [49]. Changes in

neurite extension and synapse development have also been associated with MAP1B modulation

[50]. Although MAP1B is most commonly associated with roles in postmitotic neurons, a recent

study in zebrafish indicates a role for Map1b earlier in neural convergence and neural tube

development [51]. This role may also be relevant for the formation of PVNH where early func-

tions in epithelial adherens junction formation have also been implicated [52–54]. MAP1B tran-

scripts are predominantly detected in the early stages of cortical development where they are

also negatively regulated by the Fragile X mental retardation protein (FMRP), an important

cellular process contributing to various neurodevelopmental diseases [55, 56]. Interestingly,

PVNH has also been reported in patients with Fragile X syndrome due to marked expansion

and instability of the CGG trinucleotide repeat within the FMR1 gene [57].

In addition to implicating a novel gene in PVNH, one of the most interesting aspects of this

work is the idea that sporadic disease may, in some cases, be due to deleterious variants that

arise in the germline in earlier antecedents to the proband yet for some reason fail to give rise

to a phenotype in these individuals. While non-penetrance is always a consideration in genetic

risk, the unique component here is that the MAP1B variants identified in this study are very rare

(absent from at least 150K samples encompassing all public and internal databases) and loss-of-

function variants are virtually absent from the population as well, a bioinformatics signature that

is consistent with disease-causing de novo variants. This suggests that LOF variants in MAP1B
would be likely to have occurred in very recent generations. Such a pattern has been documented

for rare deleterious copy number variants where high-risk deletions or duplications have been

shown to be transmitted from a clinically unaffected first or second degree relative, but this is

only very rarely reported for sporadic diseases caused by point or small insertion-deletion vari-

ants [58, 59]. In fact this very phenomenon has been described probabilistically and shown not
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only to be possible but likely, depending on the disease penetrance and reproductive fitness con-

ferred by the variants in question [60]. Interestingly, Kosmicki et al. recently reported over-trans-

mission of LoF variants in LoF-depleted genes in a large cohort of sporadic autism spectrum

disorder, a finding consistent with some transmitted alleles conferring risk [59]. This expansion

of the de novo paradigm in PVNH may be in part due to the syndrome’s potential to result in

sub-clinical phenotypes, but it may also represent the tip of the iceberg for a much more wide-

spread effect in sporadic disease risk that has largely not been considered in most trio-based

studies performed to date.

Methods

Ethics statement

The study was performed according to the standards of the ethics committees and the institu-

tional review boards at each institute. Columbia University Medical Center’s Institutional

Review Board centrally reviewed the approvals from each site under protocol number

AAAP0052.

Patient ascertainment and phenotyping

PVNH patients were assembled from multiple patient collections sites, including: (1) multiple

sites encompassing the Epilepsy Phenome/Genome Project (EPGP, www.epgp.org) Cohort

(n = 70), University of Florence’s Anna Meyer Children’s Hospital (n = 22), Boston Children’s

Hospital (n = 24), University of Washington (n = 12), University of Otago (n = 65), and the

Royal Children’s Hospital Melbourne (n = 10). All samples had presumed sporadic disease

based on patient and family interview, and all except for a subset in the EPGP cohort were pre-

screened either clinically or in the research setting for disease-causing FLNA variants. MRIs

were reviewed for the EPGP cohort as previously described [14] and for the additional cohorts

by the enrolling sites. Patients enrolled into the EPGP cohort were excluded if an FLNA variant

had been previously identified although not all patients underwent genetic testing for FLNA
variants. EPGP inclusion criteria included the presence of epilepsy, whereas patients in other

cohorts did not necessarily have epilepsy.

For comparison, 13,198 individuals who were sequenced as part of other genetic studies in

the IGM were used as controls in this study. Approximately 6900 were neuropsychiatrically

normal to our knowledge, and the remaining subjects had conditions where there are no

known co-morbidities with epilepsy or brain malformations (S7 Table).

Exome sequencing

Exome sequencing was performed on DNA from 202 probands and their parents at the Insti-

tute for Genomic Medicine (IGM, Columbia University), the Dunedin School of Medicine

(University of Otago, New Zealand), and the Institute for Applied Genomics (Udine, Italy) (S8

Table). All externally-generated raw data were transferred to the IGM, where a combined anal-

ysis was performed using the same alignment and variant calling pipeline. The alignment and

variant calling details have been previously reported [21]. Six of the 202 trios studied had one

or more samples from the family exome sequenced from DNA extracted from a lymphoblas-

toid cell line (LCL); all others were sequenced from primary DNA sources (S8 Table).

De novo variant calling

Candidate de novo variants were jointly called with the GATK Unified Genotyper for all family

members in a trio as described previously [21]. Variants not located in the exonic region or
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splice sites (2-basepairs flanking an exon) defined by the Consensus Coding Sequence (CCDS,

release 14, GRCh37.p13) were excluded. On average ~20 de novo single nucleotide variants

were called per individual using this permissive calling approach. To remove the false positives

from the dataset, we used Sanger sequencing validation results of a subset of de novo single var-

iant calls from a subset of the PVNH trio cohort and from 403 individuals analyzed as part of

other trio sequencing studies performed in the IGM to fit a machine-learning model using var-

iant-level, individual-level, and genomic features to predict true positives (S3 Text, S7 Table).

Trios sequenced from DNA from LCLs were excluded from this analysis. A fraction of the

trios sequenced at another site were also excluded from this model because of insurmountable

batch effect issues that confounded the model predictions. The resulting data set was com-

prised of 401 Sanger validated and 317 Sanger refuted (including inherited variants and vari-

ants not confirmed in proband) from 535 (132 PVNH and 403 from other studies) trios.

Cross-validation was used to estimate the model’s accuracy, which was found to have high sen-

sitivity (98%) and specificity (93%) (S3 Text). Confident in the model’s ability to predict true

and false de novo calls, we then applied the model to the 9,172 de novo variant calls where

Sanger sequencing was not performed. For each variant evaluated, the model assigned a proba-

bility score reflecting how likely the call is a true de novo variant. A score approaching one had

a high probability of being a true de novo variant, and a score approaching zero had a low

probability of being a true de novo variant (S7 Fig). We then set a threshold probability score

for declaring a true de novo variant using the expected number of autosomal synonymous de
novo variants per trio of 0.303 which translated to an expectation of 162 autosomal synony-

mous de novo variants across the cohort of 535 trios. The expected per trio rate of autosomal

de novo synonymous variants was calculated by taking sum of the estimated trinucleotide

mutation rate [27, 61, 62] across all possible substitutions in the autosomal protein-coding

sequence that would not result in a change in the protein-coding sequence and multiplying by

two to account for the two chromosomes. The threshold probability score for declaring a de
novo variant true was set to 0.978, which allowed for 162 total de novo variants to be accepted

as true either via direct Sanger confirmation or by having the highest probability score in the

model.

Since de novo variants called in LCL trios, indel de novo variants, and those from trios beset

by confounding batch effects were not analyzed in the model approach, we Sanger sequenced

the majority of de novo calls that we felt may contribute to PVNH, including those that passed

quality control filters and those that were absent in IGM controls and the ExAC and EVS data-

bases. Quality control filters included: single nucleotide variant calls were excluded if with

QD< 2.0, MQ< 40.0, FS > 60.0, HS> 13.0, MQRS< -12.5, or RPRS< -8.0; indel variant

calls were excluded if with QD < 2.0, RPRS< -20.0, or FS>200. More than 70% of this subset

of calls were confirmed with Sanger sequencing.

A list of all Sanger confirmed and model predicted true de novo variants identified in the

PVNH cohort (n = 219 de novo variants) are provided in S1 Table.

Listing of newly recessive, compound heterozygous, and newly hemizygous

genotypes in PVNH probands

We first identified all putatively protein-altering (missense, nonsense, or indels) residing in

the protein-coding regions (CCDS, release 14, GRCh37.p13) newly recessive, compound het-

erozygous, and newly hemizygous genotypes in the PVNH probands by assessing the geno-

types across the trios. Genotypes were excluded if they had a quality score (QUAL) <30 and a

genotype quality (GQ) score of<20 in the proband. We also required a minimum coverage of

10-fold at a variant site to call a homozygous reference genotype. Newly recessive, compound
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heterozygous, and newly hemizygous genotypes were excluded if any contributing variant had

a the minor allele frequency greater than 1% or if a recessive or hemizygous genotype was

reported in the internal control cohort or any population in Exome Variant Server (EVS) and

Exome Aggregate Consortium (ExAC release 0.3).

Hot-zone analysis

Sanger confirmed and model-predicted true (see Methods) single nucleotide de novo substitu-

tions found in PVNH cases and absent from in-house controls and the EVS and ExAC data-

bases were first scored on their likelihood to alter the encoded protein. Trios with one or more

samples sequenced from lymphoblastoid cell lines were excluded from this analysis. Synony-

mous and loss-of-function (nonsense, and splice acceptor/donor) variants were scored 0 and

1, respectively, and missense variants were scored using their Polyphen-2 score (HumVar).

We next scored each de novo variant at the gene level using the gene-level residual variation

intolerance percentile (RVIS, %RVIS_ExAC_0.05% (all populations), which ranks genes based

on their tolerance to polymorphic functional genetic variation [63] on a scale from 0 to 1, with

the higher the value the more tolerant the gene is to standing functional variation. For compar-

ison, we also assessed de novo variants in previously published healthy control trios (n = 250

[64]) using the same annotations and filtering procedures used in this study. For each case and

control sample with more than one de novo substitution meeting the aforementioned criteria,

only the single most damaging de novo variant was used; i.e. the de novo variants with the

shortest Euclidian distance from the most damaging coordinate [x = 1,y = 0] on a plot of the

variant-level vector along the X-axis and the gene-level vector (RVIS percentile score) along

the Y-axis. Individuals with no single nucleotide de novo substitutions did not contribute to

this analysis. A two-tail Fisher’s exact was used to test whether the single most damaging de
novo variants found in PVNH cases preferentially lie in the “hot-zone”, defined by a PolyPhen-

2 score of� 0.95 and RVIS� 25th percentile[63], compared to control trios.

Gene-level collapsing analyses

Variants for analysis were restricted to the consensus coding sequence public transcripts (CCDS

release 14) plus 2 base pair intronic extensions. Variants were further required to have: i) at least

10-fold coverage, ii) quality score (QUAL) of at least 30, iii) genotype quality (GQ) score of at least

20, iv) quality by depth (QD) score of at least 2, v) mapping quality (MQ) score of at least 40, vi)

read position rank sum (RPRS) score greater than -3, vii) mapping quality rank sum (MQRS)

score greater than -6, viii) indels were required to have a maximum Fisher’s strand bias (FS) of

200, ix) variants were screened according to VQSR tranche calculated using the known SNV sites

from HapMap v3.3, dbSNP, and the Omni chip array from the 1000 Genomes Project to “PASS”

SNVs were required to achieve a tranche of 99.9% for SNVs in genomes and exomes and 99% for

indels in genomes, x) for heterozygous genotypes, the alternate allele ratio was required to be

�25%. Finally, variants were excluded if they were among a predefined list of known sequencing

artifacts or if they were marked by EVS (http://evs.gs.washington.edu/EVS/) or ExAC (http://

exac.broadinstitute.org/about) as being problematic variants. Variants were annotated to Ensembl

73 using SnpEff. All variants meeting these criteria were eligible to be qualifying variants in the

gene-based collapsing analyses. Additional filtering based on variant function or per inheritance

models being tested were applied depending on the sub-analysis performed. We note that the case

and control populations were pre-screened with both KING and PLINK to ensure only unrelated

(up to second-degree) samples were used. Any exomes with gender discordance between clini-

cally-reported and X:Y coverage ratios were removed, as were contaminated samples according to

VerifyBamID. No PVNH cases were excluded with this filtering.
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Before running gene-based collapsing analysis, we implemented both sample- and site-level

pruning procedures to minimize the systemic bias in data that might lead to spurious associa-

tion or reduced power to detect real association. The site-pruning procedure was performed as

described previously[18]. Here, we described the sample-level pruning procedure including

removing related individuals and population outliers identified in principal component analy-

sis (PCA). To identify related individuals, we generated genotype data in PLINK format and

then used KING to calculate pairwise kinship coefficients for all case and control subjects. No

individual were found to be related greater than the kinship coefficient 0.1. Next we ran PCA

using EIGENSTRAT with a LD-pruned (r2 threshold 0.2) list of single-nucleotide polymor-

phisms (SNPs) extracted from exome sequencing data.

Following cleaning of the dataset, we then assessed for enrichment or depletion of “qualify-

ing variants” across cases and controls. A “qualifying variant” was defined by a set of criteria

based on allele frequency and functional prediction of that variant, with the criteria designed

to capture the characteristics of previously identified pathogenic variants causing PVNH. Spe-

cifically, in this study, a variant was determined to be qualifying in the dominant model if it 1)

was absent in the Exome Variant Server (EVS) and Exome Aggregate Consortium (ExAC

release 0.3), 2) had�4 copies of variant allele in the 196 cases plus 13,151 controls, and 3) was

predicted to be loss-of-function (stop gained, frameshift, splice site acceptor, splice site donor,

start lost, or exon deleted) or missense “probably damaging” by PolyPhen-2 (HumDiv).

In the bi-allelic model, that included compound heterozygous and recessive genotypes, a

genotype was considered qualifying if 1) the variant site(s) was predicted to be loss-of-function

(stop gained, frameshift, splice site acceptor, splice site donor, start lost, or exon deleted) or

missense “probably damaging” by PolyPhen-2 (HumDiv), and 2) the variant(s) sites had a

minor allele frequency of<0.001 in the Exome Variant Server (EVS), the Exome Aggregate

Consortium (ExAC release 0.3), and across the case-control cohort.

For each gene, an indicator variable (1/0 states) was assigned to each individual based on

the presence of at least one qualifying variant (dominant model) or genotype (bi-allelic model)

in the gene (state 1) or no qualifying variant/genotype in that gene (state 0). We note that phas-

ing of compound heterozygous variants was not taken into account in the collapsing analyses

due to the fact that those data were not available for the control cohort. Two-tailed Fisher’s

exact test was used to evaluate statistical significance of genic association. With 18,405 genes

tested, we adopted the genome-wide significance level of p = 6.79×10−7 using Bonferroni cor-

rection correcting for all the genes in the genome and the four different models tested (0.05/

18,405/4).

Quantile-quantile plots were generated using a permutation-based expectation. To achieve

this, for each model (matrix) we randomly permuted the case and control labels of the original

configuration: 196 cases and 13,151 controls and then recomputed the Fisher’s Exact test for

all genes. This was repeated 1,000 times. For each of the 1,000 permutations we ordered the p-

values and then took the mean of each rank-ordered estimate across the 1,000 permutations,

i.e., the average 1st order statistic, the average 2nd order statistic, etc. Thus, these represent the

empirical estimates of the expected ordered p-values (expected -log10(p-values)). This empiri-

cal-based expected p-value distribution no longer depends on an assumption that the p-values

are uniformly distributed under the null.

Pathway analyses

Analyses begin with marginal, gene-level p-values from a standard collapsing analysis. How-

ever, in order to optimize computational speed we use a standard chisquare test instead of

Fisher’s Exact text. Since the ultimate null distribution was computed via permutation, we
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expect this change to have minimal impact. Analyses were performed across all 10,705 path-

ways defined in the GSEA Hallmark and C2 Gene Sets, and Gene Ontology defined gene sets

[38–40]. The higher criticism (HC) test is obtained by maximizing a scaled difference between

the observed distribution of gene-level p-values across the pathway and the distribution of p-

values one would expect if all the genes were null [41]. We use permutation to compute this

expectation. The HC test is not only sensitive to extreme p-values but also to more subtle shifts

in the p-value distribution. We compute unweighted and weighted versions of the HC test,

where the weighted version upweights genes that are especially important (node centrality or

low genic intolerance) within the pathway. Since a given gene may be included in multiple

pathways, the resulting pathway-level tests will correlated. Thus, in order to account for the

large number of tests conducted while also taking this correlation into account, we use the per-

mutation-based multiplicity adjustment procedure of Ge et al [65].

PVNH gene set

We established a list of genes associated with PVNH and related phenotypes based on evidence

from the rodent and human literature for use in the co-expression analyses. To compile this

list we specifically included all genes for which mutations reproducibly produce subcortical or

periventricular heterotopia in a substantial fraction of individuals, and excluded genes with

only single reports of periventricular heterotopia in human. Nine genes have been previously

reported to be human PVNH risk loci in more than one individual, including FLNA, FAT4,

DCHS1,ARFGEF2,C6orf70,AKT3, INTS8,MCPH1, and NEDD4L [3–11]. Genes for which

mutations are reported to cause a partial, diffuse, heterotopic malformation, specifically sub-

cortical band heterotopia were excluded, however we did include genes associated with sub-

cortical heterotopia often presenting with PVNH, including GPSM2[66], EML1[5] and

KATNB1 [67]. In addition to human PVNH genes, we also included those genes in mice which

when conditionally knocked-out induce impaired neuronal migration phenotypes analogous

to, or closely resembling, subcortical or PVNH in humans, including CTNNA1, RAPGEF2,

RCAN1 and MLLT4 [68–71]. We also include MAP1B based on the data presented in this

report. C6orf70,RCAN1 and GPSM2 were not represented in all transcriptomic datasets ana-

lysed here and were therefore excluded. The PVNH genelist thus consisted of 14 genes.

Brain transcriptomic datasets

We downloaded three publicly available transcriptomic datasets generated from post-mortem

human brain. While all datasets contain only donors deemed to have normal brain develop-

ment, they are very different with regards to number of sampled regions per donor, number of

donors and ages of donors. For the Miller et al [42] dataset, on average 328 regions from 4 fetal

brains were assayed. The Colantuoni et al dataset exclusively looked at the prefrontal cortex in

266 brains from fetuses, children and adults [44]. The Kang et al dataset similarly includes

donors of all ages but sampled on average 57 regions per brain. Additional details of these data-

sets are provided in S9 Table. All three transcriptomic datasets contained post-mortem human

brain expression data from the disease-relevant time periods (4–38 weeks post conception, S9

Table), however in some cases the data were limited. Although each dataset is built from various

brain structures, for the purposes of these prioritizations this information was not used.

Using methods described previously [72], outlier samples were first removed, followed by

normalization using the Removal Of Unwanted Variation (RUV) method (R package RUV-

corr) that controls for systematic noise using negative control genes [73].

The three datasets used here were subsetted so that only the transcriptomic information

within the disease relevant periods (4–38 weeks post conception) were used targeted for use in
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the candidate gene prioritization, however only two (Miller and Kang datasets) were found to

have sufficient data to be useful in these analyses (S2 Text, S5 Table). Thus, co-expression anal-

yses were limited to just the Miller and Kang transcriptomic datasets.

Prioritization of genes harboring a de novo variant based on co-expression

with known genes

In this study, we identified 107 genes harboring model predicted true or Sanger confirmed de
novo variants, excluding FLNA, NEDD4L and MAP1B. To prioritize candidate PVNH gene

based on co-expression with the 14 PVNH associated genes (see above), we first estimated the

background correlation coefficient for any random 107 gene set whereby 20% of genes in this

list would be prioritized. To do this we generated 1,000 sets each containing 107 randomly

selected genes. In each random set, the pair-wise absolute weighted correlation between the

expression of each of these random genes and all PVNH genes were calculated. The weighted

correlation refers to correlations weighted by the inverse of the number of samples contributed

by the respective donor. For any single gene in the 107 gene set, only the maximum correlation

with a PVNH gene was retained, resulting in 107 correlation coefficients retained for each ran-

domly selected gene set, and 18,200 total correlations across all 1,000 sets of genes. From this

distribution of 18,200 maximum absolute correlations, the correlation coefficient threshold

was that corresponding to the lowest value for the highest 20th percentile was used as a thresh-

old. We then calculated the correlation coefficient between genes harboring a de novo variant

and the PVNH genes, and prioritized those with a correlation coefficient with any of the 14

PVNH genes greater than the threshold value.
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