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Abstract

Understanding the biological basis for human-specific cognitive traits
presents both immense challenges and unique opportunities. Although the
question of what makes us human has been investigated with several differ-
ent methods, the rise of comparative genomics, epigenomics, and medical
genetics has provided tools to help narrow down and functionally assess the
regions of the genome that seem evolutionarily relevant along the human
lineage. In this review, we focus on how medical genetic cases have pro-
vided compelling functional evidence for genes and loci that appear to have
interesting evolutionary signatures in humans. Furthermore, we examine a
special class of noncoding regions, human accelerated regions (HARs), that
have been suggested to show human-lineage-specific divergence, and how
the use of clinical and population data has started to provide functional infor-
mation to examine these regions. Finally, we outline methods that provide
new insights into functional noncoding sequences in evolution.
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INTRODUCTION

Our understanding of the workings of the brain, as well as its genetic underpinnings, has rapidly
advanced in recent years. This development in both neurobiological and genetic understanding
has put us in the unique position to answer the fascinating but immensely challenging question of
what makes us human.

From high-level comparisons of humans with other mammals, key behavioral and intellectual
traits are apparent. Apart from physical differences such as bipedalism and relative hairlessness
compared with other primates (Schwartz & Rosenblum 1981, Sockol et al. 2007), cognitive abilities
such as communication with syntactical grammar (Hauser et al. 2002), symbolic and abstract
representation (Penn et al. 2008), the production of art (Tomasello & Rakoczy 2003), and the
development of the scientific method are but a few that appear unique to humans.

Although we can observe these striking behavioral differences, understanding the underlying
mechanisms has been far more difficult. Neuroanatomical studies have revealed insights into alter-
ations in brain development among species, notably gross size. Humans possess an unusually large
brain compared with our nearest phylogenic relatives; the human brain is approximately three
times the size of that of chimpanzees. Many studies have investigated the biological consequences
of having an increased brain size, leading to mixed data in which some researchers suggest an im-
portant role in social and cognitive functioning (Deaner et al. 2007, Heldstab et al. 2016, Reader
& Laland 2002, Street et al. 2017). However, larger mammals (e.g., elephants and killer whales)
possess brains that are much larger than that of humans, but are not known to exhibit enhanced cog-
nitive abilities, supporting roles of other possible factors such as total neuron number (Wright et al.
2017). Furthermore, the extended duration of brain development seems to support a special type of
neurodevelopment occurring in humans because it occurs over the course of decades—longer than
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the entire life span of most primates and other mammals (Silbereis et al. 2016). However, although
more complex analyses accounting for body size and differing neuroanatomical connections have
been informative, there have not yet been any clear human-specific structural differences in the
brain that explain the observed cognitive differences among humans and other primates.

Despite the challenges in characterizing biological mechanisms behind human-specific traits,
the rapid rise in comparative genomics and epigenomics has provided novel ways to search for
processes relevant to interspecies differences. By comparing genomic sequences across species to
examine conservation and divergence, we can identify candidate sequences that may have con-
tributed to developmental differences, all without prior knowledge of the precise processes un-
derlying complex human cognitive function. More recently, the use of epigenomics has provided
an additional layer of information, relaxing the focus on sequence changes and instead examining
epigenomic marks that can suggest changes in gene regulatory function. Together, these methods
have opened alternative approaches to studying human evolution.

Moreover, there has been a growing appreciation of the potential of medical genetics in under-
standing the functional component of this question. Although the use of model organisms has been
powerful in understanding fundamental and well-conserved biology, their use in understanding
human-specific traits has been much more controversial and limited (Muotri 2016). By contrast,
medical genetics provides direct evidence that a given genomic sequence possesses essential func-
tions in human biology. This has been particularly evident in cases such as microcephaly, which
affects early brain development and neuroproliferation, and where a portion of the responsible
genes appear to have been targets of selective pressures during the evolution of the human lineage.
Analogous cases are beginning to be made for more complex neuropsychiatric conditions such
as autism spectrum disorder and schizophrenia, which have profound impacts on social behavior,
suggesting that some underlying genes might have been evolutionary targets contributing to the
development of human social structures.

The hope of evolutionary approaches to human biology is twofold. First, a better understand-
ing promises to help elucidate aspects of the long-standing and fundamental fascination with what
biological differences exist between humans and other mammals. Second, and perhaps more im-
portantly, evolutionary approaches provide a unique window into the mechanistic differences that
underlie these complex cognitive traits and processes.

In this review, we discuss cases from medical genetics that have identified genes that are impor-
tant for brain development as well as exhibit evolutionary signatures that suggest a role in pheno-
typic divergence across species. Furthermore, we examine the gradual shift of human evolutionary
biology to noncoding sequences of the genome, specifically focusing on human accelerated regions
(HARs), genomic sequences that are conserved across mammals but that appear to diverge in hu-
mans. Finally, throughout this review we discuss some of the more recent techniques that enable
high-throughput functional study of noncoding elements, and examine their role in human disease.

EVOLUTION OF GENOME STRUCTURE

Genomic Alterations Shaped Human-Specific Neural Development

Some of the most fascinating genetic advances in our understanding of why humans are distinct
from other primates resulted from the combined strengths of comparative genomics, DNA se-
quencing, and human diseases. The Chimpanzee Genome Project aimed to identify and correlate
genetic differences occurring between humans and our most recent primate ancestor, with some
of the most striking human-specific characteristics including neurodevelopmental and behavioral
evolution (Chimpanzee Seq. Anal. Consort. 2005, Olson & Varki 2003, Varki & Altheide 2005,
Watanabe & Hattori 2006). Simultaneously, numerous vertebrate genomes, including those of
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other primates, have been assembled, allowing ever-better, large-scale comparative genomic stud-
ies of human-specific phenotypes.

Comparative analyses between primates have provided many groundbreaking discoveries about
human phenotypic divergence by implicating multiple mutational mechanisms. Studies have in-
cluded examinations of the role of structural variation [e.g., deletions, segmental duplications
(Cheng et al. 2005, Chimpanzee Seq. Anal. Consort. 2005, Dennis & Eichler 2016, Lander
et al. 2001), translocations, inversions (Cheng et al. 2005, Chimpanzee Seq. Anal. Consort. 2005,
Newman et al. 2005), and transposable elements (Beck et al. 2011, Friedli & Trono 2015)] in hu-
man divergence and of amino acid conservation across different species (Bakewell et al. 2007, Sabeti
et al. 2006, Vallender & Lahn 2004). Furthermore, genomic analyses suggest that 1.5% (∼35 Mb)
of the human genome is lineage specific (Chimpanzee Seq. Anal. Consort. 2005, McLean et al.
2011). Therefore, the association of human-specific genomic alterations with cognitive develop-
ment is challenging, especially given that multiple mechanisms, including selective pressures and
genetic drift in nonfunctional elements (Cheng et al. 2005, Siepel & Arbiza 2014), resulted in
their formation. Moreover, both cognitive and social development are likely the result of many
mutations, each with a small effect size, acting in unison (Olson & Varki 2003, Varki & Altheide
2005, Wittkopp & Kalay 2011). Although many strategies have been invoked to elucidate func-
tional from nonfunctional evolutionary changes, this review leverages the strong statistical and
biological power of relevant human disease mutations to prioritize the elements identified by
comparative genomic studies of single-nucleotide changes.

Segmental Duplication and Divergent Gene Conversion in Neurodevelopment

Segmental duplications, though not the focus of this review, have revealed candidate genes for
several human-specific traits, including social and cognitive functioning (Ciccarelli et al. 2005;
Dennis et al. 2012, 2017; Paulding et al. 2003; Zhang 2003). Therefore, we suggest other articles
for further reading on the topic (Sudmant et al. 2013), but we briefly mention three genetic changes
with particular evidence relevant to brain development: DUF1220, BOLA2 (Sudmant et al. 2013),
and SRGAP2C. DUF1220 represents one of the most extensive coding sequence expansions in the
human genome (Popesco et al. 2006) and has been correlated with brain size and with potentially
promoting neurogenesis (Dumas et al. 2012; Keeney et al. 2014, 2015; Popesco et al. 2006).
BOLA2 is one of the most recent, human-specific segmental duplications and shows rapid fixation
in the human lineage (Nuttle et al. 2016, Sudmant et al. 2013). SRGAP2C is a partially duplicated
gene that disrupts the function of its ancestral gene, SRGAP2A (Figure 1a). In mouse models,
SRGAP2A expression is implicated in neuronal migration, morphology (Guerrier et al. 2009), and
dendritic spine maturation (Charrier et al. 2012), whereas disruption of SRGAP2C prolongs spine
maturation and increases spine density (Charrier et al. 2012, Fossati et al. 2016). Thus, although
the complexity of gene duplication makes it difficult to adduce statistical evidence and thresholds to
quantitatively evaluate its role in cognitive evolution, further knowledge of the repetitive structure
of primate genomes will likely further highlight it as an important mechanism.

EVOLUTION OF CODING REGIONS

Evolution of Neurodevelopmental Genes

When characterizing genomic differences between individuals, regardless of the species, the most
commonly investigated sites are amino acids in protein-coding genes, which are generally con-
served among similar species (Chimpanzee Seq. Anal. Consort. 2005, Rhesus Macaque Genome
Seq. Anal. Consort. et al. 2007, Scally et al. 2012). This conservation enables researchers to use
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the ratio of amino acid–altering mutations (i.e., nonsynonymous) to synonymous variants in a gene
(Goldman & Yang 1994) to identify using quantitative metrics potential genes undergoing positive
selection. Genome scans have revealed that as many as 15% of genes exhibit evidence of positive
selection by this criterion, resulting in hundreds of potential candidate genes (Lindblad-Toh et al.
2011, Nielsen et al. 2005). Some of the best-characterized examples include neurodevelopmental
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Human
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Figure 1 (Figure appears on preceding page)

Clinically identified and candidate regions with evolutionarily intriguing sequence signatures. (a) Although not yet clinically linked to
disease, SRGAP2C is a novel human-specific gene that in mouse models disrupts the function of its ancestral copy, SRGAP2A. The
ancestral copy is associated with neuronal migration and neurite spine maturation in mice, whereas in humans it has been found within
large deletions in children with developmental delays. (b–d ) Sequences of genes that have clinical evidence for a significant effect on
brain development. Panels c and d depict clinical phenotypes with deleterious variants in these regions; panel b illustrates a
morphological difference observed in humanized mouse models of FOXP2. (b) Deleterious variants (red ) in FOXP2 are associated with
language deficits, and human-specific sequences ( yellow) in the gene are associated with increases in neurite and dendrite length in
humanized mice. (c) Over 150 mutations in ASPM cause primary microcephaly. ASPM shows signs of accelerated evolution along the
primate lineage. (d ) Mutation in the e1m promoter of GPR56 is associated with perisylvian polymicrogyria. Abbreviation: SNV, single
nucleotide variant.

genes whose essential roles were first revealed in patients and were subsequently shown to exhibit
signs of positive selection. Although many candidate positively selected genes lack known human
disorders, those with clear associations to disease provide key insights into evolutionary changes
affecting human biology.

Evolution of Human Speech and Possible Role of FOXP2

The best-known example of a positively selected gene linked to a behavioral disorder is perhaps
forkhead box P2 transcription factor (FOXP2) (Ayub et al. 2013). FOXP2 was first associated with
development by researchers tracking a severe language and speech disorder in a large family with
deficits in producing fine orofacial movements, word inflections, and syntax (Hurst et al. 1990, Lai
et al. 2001). Despite verbal deficits, the average IQ of the affected individuals was similar to the
population average. Affected individuals possessed a single missense variant (R553H) in FOXP2 and
the gene was also disrupted in an unrelated individual with similar language deficits (Lai et al. 2001).

Once identified, comparative genetics revealed three amino acid differences between the human
and mouse FOXP2 orthologs, two of which diverge between humans and chimpanzees (Enard
et al. 2002) (Figure 1b). The rate of change is ∼60 times the expected amino substitution rate
( J.Z. Zhang et al. 2002); moreover, this change appears fixed in the human population (Lai et al.
2001, J.Z. Zhang et al. 2002). In other species requiring complex vocalization (e.g., echolocating
bats), there appears to be divergent selection on FOXP2 based on sonar systems (Li et al. 2007).
Interestingly, Denisovans and Neanderthals possess the same FOXP2 gene as humans do (Meyer
et al. 2012, Noonan et al. 2006), suggesting either that Denisovans and Neanderthals possess the
same potential for verbal communication or, more likely, that other coding and noncoding regions
also contribute to language development.

Cell lines and animal models have confirmed the functional importance of FOXP2 and the
human-specific variants in language-associated phenotypes, including different transcriptional
targets (Konopka et al. 2009) in humans and chimpanzees, humanized FOXP2 mice with accel-
erated learning, changes in ultrasound vocalizations (Enard et al. 2009, Schreiweis et al. 2014),
incomplete vocalizations in songbirds with FOXP2 knockdown (Haesler et al. 2007), and severe
vocalization and motor issues in mice with disrupted FOXP2 (Fujita et al. 2008, Shu et al. 2005).
Although FOXP2 is widely expressed in the developing brain (Ferland et al. 2003), humanized and
disease models suggest particularly strong effects in the corticobasal ganglia circuits and cerebel-
lum. However, a portion of mutant knock-in mice experience premature death (Fujita et al. 2008)
and adult mutant mice no longer exhibit different ultrasound vocalizations, potentially highlight-
ing some limitations of the mouse model (Hammerschmidt et al. 2015). Despite this finding, the
wealth of clinical, evolutionary, and functional data exemplifies how positive selection in genes,
particularly transcription factors regulating expression, can drastically alter phenotypes.
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Association of ASPM and the Centriole Complex to Human Brain Expansion

Similar to FOXP2, several genes implicated in microcephaly and neurodevelopment show signs
of positive selection. One of the more prominent genes with signs of positive selection is ASPM.
ASPM has been studied extensively in the context of both evolution and disease, specifically
microcephaly (Figure 1c).

The human ortholog of ASPM was first described for its association to microcephaly (Bond
et al. 2002). Positional cloning of the MCPH5 locus, which was strongly associated with micro-
cephaly (Roberts et al. 2002), revealed four different homozygous premature stop codon mutations
in ASPM across multiple, large, affected families (Bond et al. 2002). Subsequent clinical investiga-
tion has reported more than 150 disease-causing variants in ASPM, with most decreasing ASPM
levels by introducing either premature stop codons or frameshift mutations that cause protein
truncation or nonsense-mediated decay (Faheem et al. 2015, Stenson et al. 2017). ASPM encodes
a centrosomal protein (Fish et al. 2006) that together with WDR62, the second-most common
microcephaly gene, localizes to the mother centriole and is required for normal apical complex
formation ( Jayaraman et al. 2016). Knockdown and knockout mouse models have demonstrated
that ASPM is necessary for maintaining the neuroprogenitor pool in the ventricular zone during
brain development, affecting brain size (Fish et al. 2006).

In terms of positive evolutionary selection, the most consistent evidence has been across pri-
mates (Montgomery et al. 2011) and placental mammals (Montgomery & Mundy 2014). However,
this sign of positive selection seems to apply to numerous microcephaly-associated loci, includ-
ing CDK5RAP2, MCPH1, CENPJ, WDR62, and CEP152. Remarkably, CDK5RAP2, ASPM,
WDR62, CEP152, and CEP63, as well as other proteins encoded by microcephaly-associated
genes, physically interact and assemble sequentially at the maternal centriole, suggesting that
they may regulate neurogenesis through a common mechanism (Kodani et al. 2015). Sequence
changes in ASPM and CDK5RAP2 appear to be associated with changes in neonatal brain size
across primates (Montgomery et al. 2011). Interestingly, even in outlier primate species, such as
callitrichids, that have especially small brains among primates, changes in ASPM appear to cor-
relate with decreases in brain size, suggesting selection on ASPM can act to increase or decrease
brain size (Montgomery & Mundy 2012). Evolution on ASPM, as well as other microcephaly-
centrosomal genes, may serve as a general mechanism to influence brain size.

GENE REGULATION UNDERLYING BRAIN EVOLUTION

Role of Gene Regulation in the Evolution of Social and Cognitive Behavior

Although comparative and disease-related studies have focused on the important role of amino acid
divergence during evolution, this divergence is widely regarded as insufficient to account for all
human-specific social and cognitive functioning, brain size, and synaptic complexity. A hypothesis
gaining more attention suggests that answers to phenotypic evolution might lie in the noncoding
portion of the genome. This was postulated in early comparative genetics studies, originating from
the observation that most genes between humans and chimpanzees were strikingly similar, and
that the amount of protein sequence divergence did not seem to explain the phenotypic differences
(King & Wilson 1975). These studies revealed extremely high amino acid conservation between
humans and chimpanzees, in which 29% of proteins are identical and 71% have a median of two
nonsynonymous (protein altering) and three synonymous (amino acid preserving) substitutions
(Chimpanzee Seq. Anal. Consort. 2005). The similarity in protein sequence, along with functional
consistency across organisms, pleiotropy, and the extensive role of regulatory noncoding sequence
in gene regulation have been used to support the hypothesis that other regions (e.g., noncoding
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Wild type Disease variant Deletion

E10.5
C > T

10-bp del

Shh

Wild type

Disease variant

Deletion

Shh
Lmbr1

ZRS

Wild type

Disease variant
(Cuban)

E11.5

Disease variant
(Cuban)

Wild type

a

b

Figure 2
Example of Shh regulatory sequence mutations that have different clinical phenotypes depending on the
enhancer affected. (a) Variants in the enhancer Sbe2 are associated with a holoprosencephaly phenotype, and
(b) mutations in the ZRS lead to a preaxial polydactyly phenotype in patients (in this case, the Cuban
variant). Although these Shh enhancers do not show signs of human-specific evolutionary selection, they
illustrate more generally how changes to regulatory elements can lead to complex phenotypic outcomes,
particularly if the regulatory element is acting on important developmental genes. Depicted on the right are
corresponding changes in expression seen in mouse models of the Shh enhancer variants. Development time
points of mouse embryos are noted on the right (E10.5–11.5). Abbreviations: C > T, substitution of a
cytosine with a thymine; E, embryonic day; Sbe2, SHH brain enhancer 2; Shh, Sonic hedgehog; ZRS, zone of
polarizing activity regulatory sequence.

functional elements) had an important role in the evolution of social and cognitive development
in humans (Carroll 2008, Wray 2007).

Studies of human disease have linked alterations to regulatory regions to many complex bio-
logical functions. As a particularly instructive example, different types of mutations in regulatory
sequences of the morphogen Sonic hedgehog (SHH) have been associated with several disorders.
Deleterious mutations and truncations in the SHH gene cause holoprosencephaly (Roessler et al.
1996), and mutations affecting a neural SHH enhancer, SHH brain enhancer 2 (SBE2), located
more than 400 kb away, cause a similar phenotype ( Jeong et al. 2008) (Figure 2). When exam-
ined in transgenic mice, the enhancer point mutation significantly decreased activity (Figure 2a),
resulting in reduced affinity for SIX3, a transcriptional regulator of SHH. Moreover, a mutant
form of SIX3 associated with holoprosencephaly was unable to bind the wild-type enhancer SBE2
sequence ( Jeong et al. 2008). Further increasing the complexity of enhancers is that mutations can
have different effects depending on the tissue specificity of the enhancer. For instance, mutations
in another enhancer of the same SHH gene, active in the limb bud, manifest as a polydactyly
phenotype in patients (Lettice et al. 2003) (Figure 2b). Importantly, these loss-of-function mu-
tations reflect but a small subset of possible types of changes that may affect regulatory sequences
(Figure 3). So, this example, along with a range of other cases of regulatory sequences associated
with disease (for a review, see Epstein 2009, Maston et al. 2006), has demonstrated the important
roles of mutational alterations of regulatory sequences and the evolutionary complexity for which
these elements allow.
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d h
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a

Regulatory
element:
enhancer

Gene 1 Gene 2 Regulatory
element:
silencer

Gene 1 Gene 2

e

Figure 3
Models of regulatory sequence changes and their effect on gene expression. (a–d ) Changes in enhancer
sequences. Enhancers promoting expression of a target gene (a) can have their activity altered by mutations
in their sequence, with potential gain or loss of transcription factor–binding sites. This can lead to changes in
activity such as (b) loss-of-function, (c) changes in target specificity, and (d ) gain of silencing. (e–h) Changes
in silencer sequences. Similar to changes in enhancer sequences, for silencers (e) mutations leading to protein
binding sites can lead to ( f ) loss of silencing, ( g) change of repressor target, or (h) gain of enhancer activity.

Primate-Specific GPR56 Gene Promoter Involved in Regulating
Gyrification in Humans

However, given that millions of putative regulatory elements in humans have been identified
(ENCODE Proj. Consort. 2012, Roadmap Epigenomics Consort. et al. 2015, Zhu et al. 2013),
selecting noncoding sequences involved in human-specific developmental processes has been im-
mensely challenging. In this regard, assessing mutations in clinical cases of relevant neurodevel-
opmental disorders and then overlaying them with evolutionary data is a powerful tool to narrow
down functionally important elements. One recent example is an alternative promoter of the
GPR56 gene. GPR56 is a G protein–coupled receptor required for normal cortical development
(Piao et al. 2004). Its expression levels have been associated with the regulation of progenitor
proliferation. Prior clinical cases have demonstrated that loss-of-function mutations in GPR56
cause polymicrogyria by affecting the entire neocortex (bilateral frontoparietal polymicrogyria)
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(Bahi-Buisson et al. 2010, Piao et al. 2004). Loss of GPR56 disrupts radial glia and causes breaches
in pial basement membrane; as a result, neurons either over- or undermigrate in different regions,
leading to irregular cortical layers.

Bae et al. (2014) examined more than 1,000 individuals with gyral abnormalities, from which
they identified 5 individuals from 3 families who shared strikingly similar disruption restricted to
a cortical area surrounding the Sylvian fissure and including the primary language area (Broca’s
area). Upon linkage analysis and sequencing, the researchers discovered that the 5 patients shared
a homozygous 15-base pair deletion mutation in the promoter of e1m, a noncoding exon of GPR56
(Figure 1d). Transgenic mouse models demonstrated that this mutation led to the loss of gene
expression in the lateral cortex and the lateral ganglionic eminence, which mimics the GPR56
loss phenotype in these regions. Moreover, the 300-base pair region that contained the site of the
mutation possessed species-specific regulatory activity, so that when inserted into transgenic mice,
the sequence from a range of mammalian species drove different expression patterns (Bae et al.
2014), suggesting an example of an evolutionarily divergent noncoding element with essential
developmental functions in controlling regional cortical development in humans.

CIS-ACTING REGULATORY ELEMENTS IN NEURAL DEVELOPMENT

Using Evolutionary Signatures to Enrich for Functional Enhancer Elements

One of the most widely used analyses for identifying functional regulatory regions in the genome
involves examining levels of sequence conservation across vertebrates, including humans (Pennac-
chio & Rubin 2001). Much like with coding sequences, the conservation of noncoding sequences
across species suggests that these elements may have some function that would be disrupted by
mutations. Using this approach, early studies identified many conserved functional regulatory
elements, including neurodevelopmental enhancers (de la Calle-Mustienes et al. 2005, Nobrega
et al. 2003, Prabhakar et al. 2006, Visel et al. 2008, Woolfe et al. 2005).

Although sequence conservation has helped identify many regulatory elements, elements
contributing to human-specific traits require investigation of regions where conservation is not
maintained among humans and other species. The most dramatic example would be human-
specific deletions, which include approximately 13.5 million base pairs (Sudmant et al. 2013).
Within primates and other species, olfactory- and immune-related genes are most frequently lost
and gained, owing in part to instability caused by large clusters of gene families. In terms of human-
specific deletions, many candidates exist but few have been functionally linked to a specific trait.

One challenge to studying human-specific deletions affecting genes and regulatory elements is
the reliance on less complete genome assemblies of nonhuman species (Alkan et al. 2011, Rogers
& Gibbs 2014, Zhang et al. 2012). Despite this challenge, several regulatory regions, including
two deletions affecting an enhancer of the human androgen receptor (AR) gene and an enhancer
of the tumor suppressor gene growth arrest and DNA-damage-inducible gamma (GADD45G),
have been identified. The loss of the AR enhancer raises fascinating hypotheses regarding sexual
evolution, as it is associated with the loss of sensory vibrissae and penile spine (McLean et al. 2011,
Reno et al. 2013). However, with respect to brain development, the deletion of the GADD45G
enhancer is particularly interesting. GADD45G encodes a DNA methylase that represses the
cell cycle repressor and induces apoptosis (Zerbini et al. 2004). Somatic loss of GADD45G is
strongly associated with tissue growth in human pituitary adenomas, with many pituitary tumors
having decreased GADD45G expression (Binse et al. 2014, X. Zhang et al. 2002). Although further
characterization is necessary, it raises the possibility that a change of GADD45G expression may
be relevant to cell proliferation in human brain development.
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Identification of Elements with Accelerated Primate–Human Divergence

An alternative approach to identify elements contributing to human-specific traits focuses on
sequences that show conservation across species but accelerated sequence divergence along the
human lineage. This enriches for regulatory elements that have undergone recent evolutionary
changes at the nucleotide level in humans, possibly resulting in altered activity, conversion to a dif-
ferent mechanism (e.g., enhancer to silencer), or changes in tissue specificity. Such human-specific
changes would theoretically affect unique human traits arising concurrently with the mutation.
One class of such elements is known as human accelerated regions (HARs). HARs are genomic
segments that are highly conserved in many mammals but show unusually high (accelerated) diver-
gence between humans and other mammals; hence, they are thought to represent potential targets
of recent evolutionary selection of Homo sapiens (Lindblad-Toh et al. 2011; Pollard et al. 2006a,b).

In 2006 Pollard et al. (2006a) leveraged human and primate genome assemblies to calculate
selective pressures and conservation of genomic loci to prioritize regions with a divergence greater
than that predicted by a neutral mutation rate in humans, thus suggesting the potential for positive
selection and novel functions. Since the release of the first map of HARs by Pollard et al. (2006a,b),
several studies have identified accelerated coding and noncoding regions (Bird et al. 2007, Bush
& Lahn 2008, Gittelman et al. 2015, Lindblad-Toh et al. 2011, Prabhakar et al. 2008). The most
recent approach utilized additional markers for functional regulatory sequences, such as DNase
hypersensitivity sites to select functional human accelerated sites, revealing that up to 70% of their
substitutions are the result of positive selection (Gittelman et al. 2015). However, HARs identified
in each study often do not overlap each other, with few loci shared across the studies (Bird et al.
2007, Capra et al. 2013, Doan et al. 2016, Gittelman et al. 2015). The lack of congruency among
HARs identified in different studies is likely due partly to incomplete high-quality vertebrate
genome assemblies, including that of nonhuman primates, available at the time of each study.

Properties of HARs

Despite the differing methods of identification and a lack of congruency, HARs as a group exhibit
many features that suggest involvement in neurodevelopmental alterations that occurred in the
human lineage. The depletion of HARs in promoter regions and the enrichment within 50–
500 kb from transcriptional start sites suggest a long-distance cis-acting regulatory mechanism
(Capra et al. 2013, Doan et al. 2016). Furthermore, HARs are preferentially located proximal to
genes enriched for neuronal processes, brain development, transcription, neuronal cell adhesion,
and axon processes, which are sensitive to gene dosage, as indicated by loss-of-function intolerance
data (Lek et al. 2016) and haploinsufficiency scores (Capra et al. 2013, Doan et al. 2016, N.
Huang et al. 2010, Prabhakar et al. 2008). Similar proximal enrichment to neural genes has
been observed in several studies linking noncoding variants, though not HARs specifically, to
neuropsychiatric disorders including schizophrenia, attention deficit hyperactivity disorder, and
intellectual disability (Devlin & Scherer 2012, ENCODE Proj. Consort. 2012, Haraksingh &
Snyder 2013, Lee & Young 2013, Makrythanasis et al. 2012, Maurano et al. 2012, Nair & Howard
2013, Ward & Kellis 2012). Interestingly, it is estimated that 58% of HAR-gene interactions do
not include flanking genes but instead distant genes as far as 1 Mb away (Doan et al. 2016,
Goh et al. 2012, Heidari et al. 2014, Li et al. 2012, Lieberman-Aiden et al. 2009), suggesting
that although proximity is often a good predictor of target genes, additional global mapping
of chromatin interactions with Hi-C sequencing (Lieberman-Aiden et al. 2009) and chromatin
interaction analysis with paired-end tag sequencing (ChIA-PET) (Fullwood et al. 2010; Li et al.
2010, 2012) will further expand our functional understanding of HARs.
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Regulatory potential is often correlated with the presence and density of transcription factor
(TF)-binding motifs (Crowley et al. 1997, Harbison et al. 2004, Heintzman et al. 2007, Wasserman
& Sandelin 2004). In order for HARs to exhibit species-specific regulatory functions, the human-
specific nucleotides must affect essential motifs in such a way that their activity would be altered
in neural cell types during neural development. Several studies have shown an enrichment of TF-
binding motifs in HARs (Capra et al. 2013, Doan et al. 2016, Pollard et al. 2006a) and a significant
increase in their density, resulting in clusters of motifs (Doan et al. 2016). In support of a role in
neurogenesis, binding motifs for neural development–associated TFs such as myocyte enhancer
factor 2A (MEF2A) and SRY-related HMG-box gene 2 (SOX2) are highly enriched in HARs
(Doan et al. 2016). SOX2 is essential for the renewal of neural progenitors (Ferri et al. 2004,
Kelberman et al. 2008), and when expression is reduced, neural progenitors differentiate into
neurons. Interestingly, several enriched TFs identified by Doan et al. (2016) have roles as tran-
scriptional repressors, based on annotations present in the TRANScription FACtor (TRANSFAC)
database, suggesting that some HARs may be cis-acting transcriptional silencers, not enhancers.
Although less is known about silencers, they act through a mechanism similar to that of enhancers
except that bound TFs block or inhibit transcription of the target gene (Maston et al. 2006,
Ogbourne & Antalis 1998). Moreover, human-specific nucleotides alter TF-binding motifs by
creating or removing sites for TFs essential for neural development, splicing regulation, and neu-
ral differentiation, such as REST, CTCF, and NFIA, illuminating possible mechanisms behind
their proposed human-specific functions (Doan et al. 2016).

The role of HARs as regulatory sequences is also supported by the distance between HARs
and their closest genes and by their enrichment for CTCF binding, suggesting the predominant
mechanism relies on physical looping between gene promoters and distant HARs (Capra et al.
2013, Doan et al. 2016). Although HAR1, the first studied HAR, encodes a human-specific non-
coding RNA expressed in Cajal–Retzius neurons (Pollard et al. 2006a,b), subsequent examinations
of HARs have focused primarily on their role as enhancers. The first epigenomic evidence for a
biological role of HARs in human behavior and brain development was based on their marks of
regulatory activity, with up to 50% of HARs believed to exhibit active regulatory functions in
neural tissues (Doan et al. 2016), including many associated with developmental roles (Capra et al.
2013). In further support of functional roles of variation within HARs, there appears to be a sig-
nificant correlation between HapMap2 single nucleotide polymorphisms (SNPs) and differences
in gene expression for 16% of variants in HARs (Bird et al. 2007), suggesting that mutations in
HARs through either evolution or disease could alter gene expression.

Functional Validation of Regulatory Activity of HARs

Although the combination of human disease and epigenetic and comparative genomic screening
has led to the identification of over 3,000 HARs, further functional studies are necessary to under-
stand their biological role. Amino acid–altering mutations often result in loss- or gain-of-function,
but regulatory regions and their mutations have a much greater complexity in their functional
role. Noncoding elements have the potential to regulate multiple genes in different tissues while
acting as either enhancers or silencers of gene transcription (Figure 3a,e). Moreover, when the
elements are mutated, the cell specificity can be altered, causing aberrant expression in the same
or new tissues (Figure 3b–d,f–h). Because mutations in these elements cannot always be simply
classified as pure loss-of-function, breakthrough technologies such as massively parallel reporter
assays (Melnikov et al. 2012) and self-transcribing regulatory region sequencing (Arnold et al.
2013) have allowed for the functional interrogation of thousands of DNA regulatory fragments.
The difficulties and low-throughput nature of in vitro and in vivo functional analyses have limited
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Figure 4
Examples of regulatory sequence changes and species-specific expression profile changes. (a–c) Examples of
species-specific sequence differences in human accelerated regions (HARs) and their impact on expression
patterns in reporter mouse models. Development time points of mouse embryos are noted on the right
(E11.5–12.5). Abbreviations: E, embryonic day; Hs, Homo sapiens (human); Mm, Mus musculus (mouse); Pt,
Pan troglodytes (chimpanzee).

the number of HARs with additional functional characterization (Boyd et al. 2015, Capra et al.
2013, Doan et al. 2016, Gittelman et al. 2015, Oksenberg & Ahituv 2013, Oksenberg et al. 2013).
However, HARs that have been validated have demonstrated several drastic impacts on activity
from just a few human-specific nucleotides (Boyd et al. 2015, Capra et al. 2013, Gittelman et al.
2015, Shibata et al. 2012). The human-specific changes not only altered expression levels but
also, in some cases, changed the anatomical regions of gene expression (Capra et al. 2013).

One of these candidate HARs, 2xHAR142, is near the NPAS3 gene (Kamm et al. 2013a)
(Figure 4b). NPAS3 encodes a member of the basic helix-loop-helix transcription factor family
(Brunskill et al. 1999), and it is linked to roles in brain development and synaptic function in
knockout mice (Brunskill et al. 2005, Erbel-Sieler et al. 2004). In humans, NPAS3 is expressed
in the fetal brain during the three trimesters, with changing spatial patterns of nuclear activity in
the ventricular zone, hippocampus, cerebellum, and maturing neocortex (Gould & Kamnasaran
2011). It has also been associated with a risk for schizophrenia and bipolar disorders in family-
based studies (Kamnasaran et al. 2003), cohort studies (Pickard et al. 2008), and genome-wide
association studies (GWAS) ( J. Huang et al. 2010). In terms of evolutionary selection, what makes
NPAS3 particularly interesting is that it has more than 14 HARs in its proximity, making it the
densest HAR-surrounded locus in the genome (Kamm et al. 2013b).
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In transgenic mouse models, HAR 2xHAR142 was examined and the human sequence exhib-
ited broad activity early in development, at embryonic day (E) 10.5 and E12.5 in the hindbrain,
midbrain, and forebrain (Kamm et al. 2013a). From E12.5 to E14.5, forebrain expression is pre-
dominantly in regions of the developing cortex, hippocampus, ventral thalamus, and hypothala-
mus, whereas midbrain and hindbrain expression is more restricted. In comparison, the mouse
and chimp sequences differed in activity pattern, particularly a lack of activity in the developing
forebrain (Kamm et al. 2013a). In fact, the expression patterns of the mouse and chimp sequences
were more similar to each other than they were to the human version of 2xHAR142. This result
suggests that mutations in HARs may not act solely by changing expression levels, but may in fact
alter the regions and timing of gene expression in accordance with the changes in the TF-binding
sites. Although further functional characterization is necessary, the NPAS3 locus and its density
of HARs, demonstration of human-specific activity in the reporter mouse model, and association
to neuropsychiatric disorders make it a promising candidate for understanding human-specific
differences in brain development (Kamm et al. 2013b).

Despite the progress made in identifying expression changes, translating reporter assays and
potential regulatory changes into functional impact has been particularly difficult, especially as
genes are often regulated by multiple enhancers. This form of regulation often leads to significant
redundancy. However, recent studies have identified particularly illuminating cases of noncoding
evolutionary changes that have functional impact on brain development. One of these studies
involves HARE5, a HAR that acts as an enhancer for FZD8, a Wnt signaling receptor. The
HARE5 locus is 12 kb in length and has 16 base pair differences between the human and the chimp
sequences (Figure 4a). Ten of these mutations are fixed in the human branch and 6 mutations are
fixed in the chimpanzee branch since the divergence from our last common ancestor (Boyd et al.
2015). On the basis of the sequence divergence, TF binding is predicted to be affected, particularly
at the human-derived sites, with the sequence predicted to have gained binding sites for myc and
lost binding sites for myc repressors. HARE5 interacts directly with a core promoter of FZD8
that is ∼305 kb away, and its regulatory activity is confirmed by reporter assays, recapitulating
FZD8 activity patterns. Interestingly, when chimpanzee and human HARE5 sequences were tested
in LacZ transgenic mice, the human-specific element showed significantly stronger and tighter
expression in the lateral telencephalon beginning at E10 (Boyd et al. 2015). The chimpanzee
sequence, although overall spatially similar in terms of expression, induced a more diffuse and
weaker expression profile.

Functionally, HARE5 seems to affect neural progenitor cells. Both chimpanzee and human
enhancers were active in most Pax6-positive neuroepithelial cells, with a smaller portion active
in TuJ1-positive neurons at E10.5, and these enhancers appear active in the ventricular zone at
E12.5. Furthermore, in transgenic mice in which human HARE5 drove FZD8 expression, there
was increased cell cycling in neural progenitors and more FoxP1-positive neurons. An analysis of
E18.5 transgenic mice in which the FZD8 gene is controlled by either the human or the chimpanzee
HARE5 sequence showed an increase in cortical size of ∼12% due to the human-specific alleles
(Boyd et al. 2015). This change in brain size consisted of an increase in tangential length rather than
cortical layer thickening, similar to cases of β-catenin (Chenn & Walsh 2002), further supporting a
progenitor proliferation mechanism. Although further work is necessary to demonstrate function
in the human brain, the study by Boyd et al. (2015) demonstrates the potential functional role that
some HARs may have in neurodevelopment.

As an orthogonal approach, recent comparative epigenomic analyses have examined the en-
hancers in the developing (Reilly et al. 2015) and adult (Vermunt et al. 2016) brain, as well as
induced pluripotent stem cell (iPSC)-derived neural crest cells (Prescott et al. 2015). These stud-
ies have generated sets of promising candidates that appear to display species-specific activity,
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particularly given the tissue-specific activity used to identify the elements. In bulk sequencing
approaches, observed human-specific differences in enhancer activity can sometimes be due to a
mix of enhancer activity differences and cell population changes across species (Vermunt et al.
2016); however, in all three studies (Prescott et al. 2015, Reilly et al. 2015, Vermunt et al. 2016)
HARs appear as candidates. As comparative epigenomics rapidly improves, particularly in its
ability to capture cell specificity and diversity, the use of histone mark–based chromatin im-
munoprecipitation sequencing to find conservation will provide researchers a powerful method
for uncovering species-specific enhancers, proving valuable for both assessing enhancers derived
from conservation-based methods and identifying enhancers that are not well conserved and hence
would be missed by traditional comparative genomic methods. Together with the expansion of
iPSC-derived in vitro models with respect to cell type diversity as well as the number of nonhuman
mammals (particularly primates), these methods may provide insightful tools to study comparative
epigenomics in organisms that have been traditionally difficult to study.

Role of HARs in Social and Cognitive Development from Studies of Autism
Spectrum Disorder and Schizophrenia

As demonstrated throughout this review, one of the best tools for mapping elements to their func-
tion is by studying relevant human phenotypes and their underlying mutations. However, studies
are just beginning to utilize large-scale sequencing and SNP array data to assess HARs in neurolog-
ical disorders. Early studies provided some clues to their roles in autism spectrum disorder (ASD)
and schizophrenia. Oksenberg and colleagues (Oksenberg & Ahituv 2013, Oksenberg et al. 2013)
confirmed the existence of enhancers within noncoding HARs of AUTS2, a gene linked to ASD,
and postulated that mutations in these elements might contribute to risk of ASD (Figure 4c).
Taking a GWAS approach, Xu et al. (2015) revealed that genes associated with HARs are en-
riched for loci with significant associations to schizophrenia. Furthermore, GABAergic and glu-
tamatergic genes were enriched among the HAR-associated schizophrenia genes. Interestingly,
HAR-associated genes were enriched for processes involved in synaptic formation, and exhibited
a higher connectivity to regulatory networks in the prefrontal cortex (Xu et al. 2015). By directly
identifying highly penetrant risk alleles in ASD, Doan et al. (2016) sequenced a cohort of consan-
guineous families with ASD whose diagnoses could not be accounted for by underlying coding
region mutations or copy number variants. Using an approach similar to those widely used in
large-scale de novo exome and genome studies of ASD, this study provided the first evidence that
mutational excess of recessively acting point mutations in HARs has a role in ASD. These HAR
mutations were suggested to alter essential pathways that regulate brain development such as gene
splicing, synaptogenesis, and others, including MEF2C, CDKL5, PTBP2, and GPC4, with known
association to ASD and intellectual disability (ID) (Doan et al. 2016). With a combination of tran-
sient transgenic mice and luciferase assays, Doan et al. (2016) showed an interaction of HAR426
with the promoter of CUX1, a gene that regulates dendritic spine density in a dosage-sensitive
fashion in mice (Cubelos & Nieto 2010; Cubelos et al. 2010, 2014). Furthermore, HAR426 has
in vitro and in vivo enhancer activity, and a mutation in HAR426 found in several individuals
with ASD or ID results in increased enhancer activity (Doan et al. 2016). Therefore, mutations in
HAR426 may affect synaptic complexity through overexpression of CUX1, which alters dendritic
spines in mice. Although these studies provide an intriguing insight into several interesting HARs,
the data supporting their roles need much additional work. Moreover, these studies do not distin-
guish the strength of the effects of the mutations in HARs, whether they are low-penetrance risk
alleles, or whether they are highly penetrant alleles with the potential for Mendelian conditions.
Furthermore, as the study leveraged the elevated rates of recessive disease in consanguineous
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families, it has yet to be shown whether such a contribution exists in other populations or whether
other mutational classes such as de novo point mutations have a role.

CONCLUSIONS

Our understanding of the biological basis of evolutionary changes in human social and cognitive
functioning has dramatically increased owing to recent breakthroughs in whole-genome sequenc-
ing of hundreds of species and tens of thousands of human genomes, including those in both healthy
individuals and individuals with neurological disorders. Although the question of what makes us
human remains unsolved, the combination of human disease genetics and comparative genomics
has revealed important contributions by amino acid–altering coding mutations in genes such as
those involved in neural development and brain size. Moreover, the discovery of disease-associated
mutations in both promoters and HARs provides intriguing new elements with strong functional
ties to brain development. Through limited studies HARs have already been linked to synaptic
complexity, brain size, and social and cognitive disorders such as ASD and schizophrenia. To-
gether, each evolutionarily distinct genomic coding and noncoding region in humans provides key
pieces to the puzzle of why humans possess such unique social and cognitive abilities and behaviors.
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