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Abstract

Ray Guillery had broad research interests that spanned cellular neuroanatomy, but was perhaps best known for his investigation
of the connectivity and function of the thalamus, especially the visual pathways. His work on the genetics of abnormal vision in
albino mammals served as an early paradigm for genetic approaches for studying brain connectivity of complex species in gen-
eral, and remains of major relevance today. This work, especially on the Siamese cat, illustrates the complex relationship
between genotype and physiology of cerebral cortical circuits, and anticipated many of the issues underlying the imperfect rela-
tionship between genes, circuits, and behavior in mammalian species including human. This review also briefly summarizes stud-
ies from our own lab inspired by Ray Guillery’s legacy that continues to explore the relationship between genes, structure, and
behavior in human cerebral cortex.

When Ray Guillery died last April, neuroscience lost a great mind
and a great person, a giant intellectual leader who was so under-
stated that his remarkable contributions may not be as widely known
as they should be. Those of us fortunate enough to have spent an
extended period of time with him during our training believe that
our careers bear his indelible imprint, if not being largely defined by
his influence. In this piece, I will try to capture Ray’s approach to
science and its effects on me, with apologies that there is no clear
way to describe this other than being autobiographical. His thoughts
and imprint live on, and readers unfamiliar with the man will
undoubtedly find his way of thinking about the brain to be interest-
ing and informative (Guillery, 2017).
I will never forget the first lab meeting when I heard Ray present.

I was a first-year graduate student, and this meeting captures in my
mind the essence of his genius, recognizable by those who knew
him. He was teaching us about the phenomenon of transsynaptic
degeneration, discovered by Bernhard von Gudden (Muller, 2001),
whose work Ray was studying at the time: removing the eyes of
newborn animals to understand how this manipulation affected the
patterns of connectivity of the remaining eye. He told us not only
about von Gudden’s work, but the entire story of von Gudden, who
was best known as the personal psychiatrist for “mad” King Ludwig

of Bavaria, the benefactor of Richard Wagner, and the designer and
builder of Neuschwanstein (the castle in Bavaria that is the model
for the Disneyland castle). And to cap it off, he told us the enduring
mystery story of how von Gudden and Ludwig died together under
the most mysterious of circumstances, drowned in 3 feet of water in
the midst of controversy about Ludwig’s fitness to lead the country
(Guillery, 2011).
This was Ray. He was always putting science into a larger cul-

tural-philosophical context, bringing in art and history and humor.
We would talk science and philosophy over lunch in a subbasement
conference room at the University of Chicago, eating our sand-
wiches and drinking black coffee. At some point I would make
some poorly informed philosophical generalization, and he would
pounce on me and tell me I was shooting from the hip. We talked
about Kuhn’s “Structure of Scientific Revolutions” (Kuhn, 1962),
and what really counted as a revolution in neuroscience and what
did not. He told me about how 19th century neuroanatomists were
influenced by their culture and intellectual traditions—those west of
the Rhein river (such as Campbell, and Cajal) by the empiricists
such as Berkeley and Hume, while those east of the Rhein (such as
Koelliker, Brodmann, and the Vogts) by the idealists such as Kant.
We can see this in the classification of cerebral cortical areas: Cajal
describes nine layers in some areas, and five layers in other areas,
describing them one at a time as they appear under the microscope.
In contrast, Brodmann postulates an over-arching developmental-
functional-evolutionary “Urstruktur” of a conserved 6-layer structure
—but nonetheless one that is subject to absence of layers in some
places and duplication of layers in other places (Brodmann & Garey,
2006). Which system is better? How do we define which system is
better? Though Ray loved to poke fun at the Germanic culture into
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which he was born, such decisions like this are based on scientific
utility, and here he concluded that Brodmann’s concept of a shared
6-layered structure has certainly been biological insightful and use-
ful.
Of course, one of Ray’s greatest scientific heroes was Ramon y

Cajal, and he transmitted that love to me by talking about the man,
his work, and his unique character as he had understood it (he him-
self never having met Cajal). When he indicated that anyone serious
about neuroanatomy had to read Cajal’s “Histologie du Systeme
Nerveux” (at that time not available in English), I promptly
embarked on teaching myself enough French so that I could stumble
through it. Ray also encouraged me to take extra coursework in
genetics, unusual for a budding neuroscientist, but which had a per-
manent influence on my future course.
Ray taught us Peter Medawar’s credo that Science is the “Art of

the Soluble” (Medawar, 1967). By that he meant to take an impossi-
bly difficult problem—understanding the function of the brain, for
instance—and find within that a problem that was interesting, but
nonetheless “soluble” on some level—for which definitive data
could be found, or a specific hypothesis disproven. The disproof of
hypotheses was how Medawar writes that science moved forward,
leading to his famous critique of psychoanalysis as being useless
because it was essentially nondisprovable. It was not just this
approach of finding soluble problems that influenced me, but the
discipline of reflecting on how we find soluble problems that has
had a lasting effect. Medawar’s books are still as timely now as
then, and I recommend them to students and postdocs.
One of the many projects ongoing in Ray’s laboratory at that time

was the study of the Siamese cat (Guillery, 1969; Guillery, Casa-
grande, & Oberdorfer, 1974; LaMantia, 2018; Mason & Guillery,
2018; Taylor, 2018). Siamese cats are a temperature-sensitive albino
mutation, hence their dark points, and they manifest abnormalities
of the visual system that Ray and others described in albinos of
many, apparently all, mammalian species, including humans (Guil-
lery, 1971; Guillery, Amorn, & Eighmy, 1971; Guillery & Kaas,
1973; Guillery, Okoro, & Witkop, 1975). In each albino, a majority
of the retinal ganglion cell fibers from the temporal retina that
would normally project to the ipsilateral (same side) lateral genicu-
late nucleus instead send their axons contralaterally—to the same
spot but the wrong side of the brain. This creates a disorderly map
of the retina in the LGN and, if transmitted unaltered to the cortex,
a highly abnormal visual map on cortex in which a single cortical
column would receive input from two different points of the same
retina–in essence, data from two noncorresponding points in visual
space—hence a fundamentally ambiguous visual map that would
seem to prevent normal motor behavior (Figure 1). Yet, Ray and
Jon Kaas showed that relatively normal visual behavior on the part
of Siamese cats in their Midwestern colony reflects the suppression
at the level of the cerebral cortex of much of the abnormal input,
and Viven Casagrande showed that the visually guided behavior of
Siamese cats is generally excellent (Casagrande, Guillery, & Hart-
ing, 1978; Guillery & Casagrande, 1977). Even more amazingly,
Hubel and Wiesel showed in their own “Boston” Siamese colony an
alternative solution—a true developmental miracle–in which the
globally abnormal visual map is recognized as abnormal prior to
the eyes opening, and is reorganized to reconstruct at the level of
the cortex an orderly map of the world (Cooper & Blasdel, 1980;
Guillery & Casagrande, 1977; Hubel & Wiesel, 1971; Kaas & Guil-
lery, 1973).
Thus, the Siamese cat presents two fundamental and fascinating

problems in developmental biology. One relates to how retinal gan-
glion cells are instructed to project to one side or another of the

brain, and what is the role of pigment—which is only detectably
present in the pigmented retina and not in the neural retina—in this
process? This issue is discussed elsewhere in this issue (Mason &
Guillery, 2018). And the second developmental problem, much more
profound, is about how the “nongenetic,” or perhaps epigenetic,
map reorganization (prior to visual experience) takes place. This lat-
ter question raised fascinating issues of the roles and limits of
genetic explanations, taken up in a review article by Gunter Stent at
the time.

For the viewpoint that the structure and function of the ner-
vous system of an animal is specified by its genes provides
too narrow a context for actually understanding developmental
processes and thus sets a goal for the genetic approach that is
unlikely to be reached. Here ‘too narrow’ is not to mean that a
belief in genetic specification of the nervous system necessarily
implies a lack of awareness that in development there occurs
an interaction between genes and environment, a fact of which
all practitioners of the genetic approach are certainly aware.
Rather, ‘too narrow’ means that the role of the genes, which,
thanks to the achievements of molecular biology, we now
know to be the specification of the primary structure of protein
molecules, is at too many removes from the processes that
actually ‘build nerve cells and specify neural circuits which
underlie behavior’ to provide an appropriate conceptual frame-
work for posing the developmental questions that need to be
answered.(Stent, 1981)

To a na€ıve, second-year graduate student, the nongenetic, com-
pensatory alteration of thalamo-cortical pathways that occurs in Sia-
mese cats, in which disordered mapping is either selectively
suppressed or globally reorganized into a continuous map of visual
space, harkened philosophically to Emanuel Kant’s Critique of Pure
Reason (Kant, 1998), in which he proposed that space, time, and
the categories are forms imposed by the mind (or brain) on the stuff
of sensory experience. Hence, this forced visual reorganization rep-
resents a demand that the brain, or the “unity of consciousness” of
Kant, can only function according to certain rules that in this case
demand an orderly representation of visual space at all costs. Thus,
neural mechanisms at the level of cortex demand orderly maps of
the world, and when they are disrupted at the retinogeniculate level
by albinism, they are reconstructed at the level of cortex by non-
genetic mechanisms.
Back then, as I was casting about for a PhD thesis project, defin-

ing the biological instantiation of Kant’s “a priori” knowledge in the
thalamo-cortical reorganization of Siamese cats, did not seem to sat-
isfy Medawar’s dictum of the “Art of the Soluble” by a good bit.
Even the seemingly simpler problem raised by the albino–defining
how pigment might regulate axon crossing–seemed difficult and not
well-modeled by mice, where the genetics is good but the animals
have only a puny uncrossed visual projection so that the magnitude
of the effect of albino mutations is small. So my thesis with Ray
settled for soluble problems. For example, working with Ray and
Ed Polley, we described the timing and pattern of neurogenesis of
the cat’s retinal ganglion cells, finding that distinct subtypes (med-
ium, large, and small) are generated sequentially within a given spot
of the retina, forming multiple waves of production (Walsh & Pol-
ley, 1985; Walsh, Polley, Hickey, & Guillery, 1983). And Ray and
I examined the pattern of outgrowth of retinal axons through the
optic nerve, chiasm, and optic tract in relation to these patterns of
neurogenesis (Guillery & Walsh, 1987a,b; Walsh, 1986; Walsh &
Guillery, 1985), finding that axons organized themselves in the optic
system according to the sequence of production of the parent
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neurons (Torrealba, Guillery, Polley, & Mason, 1981). Our thinking
was that, even if these studies would not solve the albino problem
(and they did not), they might be useful background for getting at
it. Notably, three papers from my PhD thesis with Ray (Polley &
Walsh, 1984; Walsh, 1986; Walsh & Polley, 1985) were published
without him as a co-author, which was as unheard-of then as it is
today, demonstrating Ray’s tremendous generosity as a scientist and
mentor.
Many studies from Ray’s lab at that time were done on ferrets, an

animal that Ray introduced into neuroscience as an ideal model to
study development. While at Wisconsin, with its large veterinary
school, he explored many different mammalian species in terms of
their visual system organization, and in terms of genetically induced
retinogeniculate abnormalities (Guillery, 1971; Guillery, Oberdorfer,
& Murphy, 1979; Huang & Guillery, 1985; Linden, Guillery, &
Cucchiaro, 1981). While their general brain and visual organization
and timing of development resembles the cat and other Carnivora,
ferrets are born in very large litters (6–12 kits), and only 40–
42 days after conception, right in the middle of cerebral cortical
neurogenesis (Jackson, Peduzzi, & Hickey, 1989), so that half of
cortical neurogenesis occurs after birth, and much of retinogenicu-
late axon maturation occurs postnatally as well (Cucchiaro & Guil-
lery, 1984). He not only used them for postnatal manipulations, but
also pioneered and described how remarkably amenable they are to
fetal surgery.
Ray left Chicago for Oxford just as I finished my PhD, and at

Oxford, he continued work on the organization and development of
retinal projections to the thalamus, albino abnormalities, and thala-
mic structure (LaMantia, 2018; Mason & Guillery, 2018; Taylor,
2018). He also showed how sensory inputs wire into circuits that
have already formed with their own internal logic, and studied how
corticothalamic and thalamo-cortical projections organize and reor-
ganize on their respective routes (Adams, Lozsadi, & Guillery,
1997; Guillery, 1995; Mitrofanis & Guillery, 1993; Moln�ar, 2018;
Onat, Oglu, & Cavdar, 2018; Sherman & Guillery, 1996). This work

also resulted in his first book, with Murray Sherman, Exploring the
Thalamus (Sherman & Guillery, 2001), and eventually to his second
and final book (Guillery, 2017), where he increasingly thinks about
relationships between thalamic and cortical and other connections,
and how they relate functionally to our experience of the world.
I left Chicago soon after finishing my PhD with Ray, and contin-

ued to residency training in neurology at Massachusetts General
Hospital, which at that time was a hotbed of pioneering human neu-
rogenetics research, with the initiation of work to map and clone
genes for Huntington’s disease, familial Alzheimer’s disease, and
others (Martin, 1989). My subsequent postdoctoral fellowship with
Connie Cepko involved learning molecular biology and more genet-
ics, but was similarly descriptive from an anatomical point of view,
with a focus on describing patterns of neurogenesis of cerebral corti-
cal neurons using retroviral gene transfer. We developed libraries of
retroviruses with DNA barcodes that could track clones of sibling
cells regardless of where they migrated in the brain (Walsh &
Cepko, 1988, 1992, 1993), so that we could extend methods she
developed in the retina to studying the cerebral cortex. I continued
to correspond with Ray about our findings, got his comments and
support on some of our early papers, and adopted the ferret as an
experimental animal for cerebral cortical cell lineage mapping as
well after I started my own lab (Reid, Tavazoie, & Walsh, 1997;
Ware, Tavazoie, Reid, & Walsh, 1999). In fact, our lab recently
generated one of the first engineered neurological knockouts in fer-
rets, showing how much better they model defects of human cortical
development than mice, and dedicated that paper to him posthu-
mously (Johnson et al., 2018).
My return to studying genes and cerebral cortical development—

and now specifically human cerebral cortical development—started
unexpectedly a few months after setting up my own lab in 1993. At
a meeting in Venice, I heard a short talk by Peter Huttenlocher,
child neurologist and a former colleague of Ray’s from the Univer-
sity of Chicago, and one of my teachers when I was in medical
school there. Ray and Peter were good friends and both had suffered

Fig. 1. The Siamese cat abnormality, as an example of albino abnormalities in mammals. Taken from Kaas (2005) (with permission), the left panel illustrates
the normal pattern of partial decussation of visual fibers from the retina to the geniculate, and their normal pattern of projection to visual cortex. The right panel
summarizes the abnormal patterns of decussation seen in the Siamese cat, in which fibers from temporal retina that normally project ipsilaterally undergo abnor-
mal crossing at the optic chiasm. This panel also illustrates the two ways in which this abnormal visual input is corrected at the level of the visual cortex, either
by a relatively normal pattern of geniculocortical projection (along with relative suppression of the abnormal input) in Midwestern Siamese cats, or reorganiza-
tion and re-mapping of the abnormal input in the Boston cats.
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from the Nazi Regime as young children—Ray by escaping Ger-
many in the middle of the night before the war (Sherman et al.,
2017), and Peter suffering through the war and its aftermath in Ger-
many as a young child before leaving for America in the late 40s
(Lin et al., 2013). Peter presented a family with an inherited malfor-
mation of the cerebral cortex, called periventricular nodular hetero-
topia (Huttenlocher, Taravath, & Mojtahedi, 1994) (Figure 2) which
he already suggested was X-linked but lethal to males. When I
heard him speak it seemed like an epiphany, one of those rare
moments in science where I literally felt my heart race and my
palms sweat, because here was a “soluble” problem in human devel-
opmental neurogenetics, to map and hopefully clone the gene
responsible for the Huttenlocher syndrome. Peter had already shown
that the gene was on the X chromosome, so how hard could it be to
identify it, and then we could understand how that gene relates to
the abnormal cerebral cortical neuronal migration. Of course, this
problem seemed soluble for the very reason that it lacked many of
the subtleties and the Kantian scope inherent in understanding the
wiring changes of the albino abnormality.
Our lab dove into the mapping (Eksioglu et al., 1996) and clon-

ing of the FLNA gene responsible for Huttenlocher’s periventricular
nodular heterotopia (Fox et al., 1998; Sheen et al., 2001). And this
led to similar studies of “double cortex” syndrome (Figure 3),
another X-linked cortical malformation, and the identification of the
DCX gene responsible for that disorder, and the finding that DCX is
a uniquely specific marker of newborn neurons (Allen, Gleeson,
Shoup, & Walsh, 1998; Gleeson et al., 1998, 1999). That led to
studies of dozens of other genetic malformations of the cerebral cor-
tex (Figure 3), and from there we ventured more broadly into study
of genetic intellectual disabilities and autism spectrum disorders. So,
in many ways my subsequent career—analyzing genes that are
essential for normal formation and function of the human cerebral
cortex—was a direct followup, and an ongoing tribute to, the ideas
that Ray first brought out, to define how the cerebral cortex is
defined developmentally by a set of genes. Yet what Ray’s work
had already shown was how these genes nonetheless do not account
for many of the most interesting and mysterious aspects of human
brain function.
Though the developmental basis for the albino misrouting is still

not completely understood, the description of the cortical mapping
abnormality of human albinos has progressed considerably with

noninvasive imaging methods (Bridge et al., 2014; von dem Hagen,
Houston, Hoffmann, Jeffery, & Morland, 2005; Hoffmann, Tolhurst,
Moore, & Morland, 2003; Morland, Baseler, Hoffmann, Sharpe, &
Wandell, 2001). Remarkably, humans (Guillery, 1990; Guillery
et al., 1975; Hedera et al., 1994; Hoffmann et al., 2003; Kaule
et al., 2014) as well as other primates (Guillery et al., 1984), often
show the sort of conflicting cortical maps described by Ray and Jon
Kaas in the Midwestern Siamese cats, in which there are two non-
corresponding and mirror-reversed maps of visual space overlapping
in the same hemisphere of primary visual cortex (Guillery, 1990).
Stated in other words, area 17 of the right hemisphere has a map of
the left visual hemifield as the textbook would say, with the midline
represented at the 17–18 border and eccentricities of the visual field
moving from center to left periphery mapping away from the border.
However, that same area 17 also has a second, overlapping map of
the right visual hemifield, with the midline again at the 17–18 bor-
der, but now eccentricities from center to right periphery also map-
ping away from the border, overlapping the other, mirror reversed
visual map. How do two mirror-reversed maps of noncorresponding
points in visual space on the same suite of neurons make sense?
And furthermore how do albino humans, despite decreased visual
acuity and depth perception, develop normal reading ability (Bridge
et al., 2014; Cole, Conn, Jones, Wallace, & Moore, 1987; Huurne-
man, Boonstra, & Goossens, 2016a,b,c, 2017; MacDonald, Kutz-
bach, Holleschau, Wyckoff, & Summers, 2012), remarkably normal
motor behavior, and largely neurotypical cognition?
These questions raise broader questions that remain unanswered

despite studies of thousands of patients with abnormally formed
brains, caused by specific genetic defects, which has only deepened
the mystery about the tremendous range of shape and form of the
human brain that is often compatible with remarkably normal intelli-
gence, and outward appearance and behavior. The variety of patterns
of human cerebral cortical development that are consistent with neu-
rotypical cognitive and behavioral development is enormous, sug-
gesting that the “normal” pattern of human brain development can
be amazingly broad and permissive. For example, in Huttenlocher’s
periventricular heterotopia, typical patients have normal IQ and are
behaviorally and cognitively indistinguishable from normal, although
there is an increased rate of dyslexia, and patients are often first
diagnosed when they have a brain MRI scan for other reasons
(Chang et al., 2005, 2007). Yet, these patients have large numbers

A B C

Fig. 2. Periventricular nodular heterotopia. The first image (A), shows an axial MRI scan from a normal individual, showing the normal configuration of the
cerebral cortex, and ventricular lining. The ventricles show white matter signal right down to the ventricular surface, except for a small part of the ventricle
shown on the left side where the body of the caudate nucleus appears near the ventricular surface. The middle image (B) shows an MRI scan of a woman with
periventricular nodular heterotopia due to a mutation in the FLNA gene, in this case a de novo mutation not shared by her parents. The small arrows highlight
the continuous lining of the ventricular surface on both sides with irregular nodules that show identical signal characteristics to normal cerebral cortex.
Figure (C) is adapted from Christodoulou et al. (2012) (with permission) and shows resting-state functional connectivity MRI with bold oxygenation level-
dependent (BOLD) imaging. The periventricular nodules in this patient are highly active, and their activity is synchronized with overlying cortex, suggesting
that these abnormally placed nodules are structurally and functionally integrated into cerebral cortical circuits.
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of cerebral cortical neurons arranged in irregular blobs centimeters
from their normal locations (Figure 2), usually structurally and func-
tionally connected to the overlying cerebral cortex in bizarre pat-
terns that belie the neat 6-layered structure of textbook cerebral
cortex (Christodoulou et al., 2012, 2013; Shafi et al., 2015). Are
patients using these abnormally located cortical neurons in con-
scious thought, or are they capable of normal conscious thought
despite the apparent interference of these abnormally positioned
neurons? The genetic aspect of this is the tremendously wide vari-
ety of shapes and sizes that the human brain can be transformed
into by the action of highly penetrant, Mendelian genes, that can
arrest neurons in the wrong place, damage a hemisphere, or more.
An extreme example is presented by hemimegalencephaly, the
abnormal overgrowth of one cerebral hemisphere, reflecting somatic,
mosaic mutations (present in some neurons but not all neurons), in

genes such as MTOR, AKT3, PIK3CA, and PIK3R that all encode
members of the MTOR pathway regulating cell proliferation and
growth (D’Gama et al., 2015, 2017; Poduri et al., 2012). The patho-
logically enlarged hemisphere never functions properly because of
the mutation, and is the source of intractable epilepsy beginning at
birth. Now, the common treatment is surgical removal, or surgical
disconnection, of the entire hemisphere, as the opposite hemisphere
usually is normal and does not contain the mutation. Yet following
hemisphere removal, living on just one cerebral hemisphere, many
of these children can develop cognitively and behaviorally remark-
ably well (Figure 4).
Just as mysterious as the diversity of genetic abnormalities consis-

tent with a relatively “typical” apparent experience of the world is
the diversity of abnormal responses that can occur when the same
highly penetrant genetic mutation occurs in different individuals.

A B C

D E F

G H I

Fig. 3. Diverse human brain malformations. The panel shows axial MRI scans from a normal individual (E) surrounded by MRI scans of brains from eight
individuals with Mendelian disorders of cerebral cortical development. (A) Perisylvian polymicrogyria, presents with normal patterns of cortical folding frontally
and posteriorly, with disrupted gyral folding in the perisylvian region (arrows). These patients have a wide range of intellectual and epilepsy phenotypes from
almost normal to severely epileptic and intellectually disabled. (B) Shows bilateral frontoparietal polymicrogyria, reflecting biallelic mutation in GPR56, associ-
ated with severe intellectual and motor disability. (C) Shows classical lissencephaly, with a smooth, thick cortex, reflecting abnormal neuronal migration, and
associated with intractable neonatal epilepsy, severe motor disability, and usually early death. (D) shows “double cortex” syndrome, in this case due to a female
with heterozygous mutations in the X-linked DCX gene, and again showing a very wide range of phenotypes, generally proportional to the thickness of the
abnormal subcortical band of neurons, and including intellectual disability and seizures. (F) Shows Walker-Warbug lissencephaly, also associated with severe
disability, intractable epilepsy, and early death. (G) Shows periventricular nodular heterotopia, with the abnormally located neurons highlighted by arrows, and
associated with FLNA mutation. This condition is generally associated with normal intelligence and variable seizures, and with some patients being clinically
asymptomatic altogether. (H) Shows primary microcephaly, in this case due to biallelic mutation in ASPM, and associated with a cortex that is 50%–60%
reduced in volume, but relatively normally patterned, with normal cortical thickness, and associated with good motor function, intellectual disability, but usually
some language development. (I) Shows a patient with complex microcephaly with simplified and abnormal gyral patterning, in this case reflecting biallelic
mutation in WDR62, and associated with more severe intellectual disability and motor delay.
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Many genetic mutations, including deletion or duplication of chro-
mosome segment 22q11.2 (Fine et al., 2005), or deletion or duplica-
tion of chromosome 16p11.2 (Hanson et al., 2010; Weiss et al.,
2008) and certain highly penetrant point mutations–such as point
mutations in TSC2 (Numis et al., 2011), SHANK3 (Durand et al.,
2007; Guilmatre, Huguet, Delorme, & Bourgeron, 2014), CHD8
(Bernier et al., 2014), and others–can cause a range of phenotypes
in different individuals carrying essentially the same mutation. In
most cases, individuals carrying such highly penetrant mutations are
abnormal neurologically somehow, but the exact manifestations—
whether intellectual disability, autistic symptoms, epilepsy, motor
weakness, psychotic symptoms, or virtually no symptoms at all—are
often remarkably variable between individuals with the same muta-
tion, even from the same family (Manzini et al., 2014). This vari-
ability of neurological manifestations of a shared genetic mutation
again harkens back to Stent and to the Boston and Midwestern Sia-
mese cats, where the neurophysiological and behavioral output of a
given mutation reflects additional causes that we have yet to iden-
tify. Those many years ago, the Siamese cat already provided a way
to conceptualize the neurobiology of such differences—that the
same genetic mutation might have diverse effects on higher order
cortical wiring in different individuals. But we know less about what
these other underlying causes of variability—or variable penetrance,
in genetic parlance—might be. There are reasons to suspect that
“common variation” at multiple sites in the genome might play a
role, but I have always felt that the development of each complex
brain is a singular history, in which the genes only establish initial
conditions of a complex algorithm, and that stochastic, nongenetic,
aspects of development might also play a role.
In his last year of life, Ray finished an amazing book that I

recommend to all (Guillery, 2017), in which he proposed a

plausible, unifying, neurobiological model to explain our private
sense of self—that is, a continuous internal sense of being and
continuity. He presents a compelling argument that this psycho-
logical sensation reflects patterns of parallel recurrent projections
through the brain, with central cortical centers essentially receiv-
ing a parallel report of outgoing motor signals via branched col-
laterals. His approach is radical in proposing specific
connectomic pathways underlying some of our experiences that
we think of as most uniquely human, while also suggesting that
these same pathways—and perhaps analogous experiences—ap-
pear to be shared by other mammals. I find this model particu-
larly appealing because it provides a simple explanation for how
the wide variety of genetic forms of the human brain shares cer-
tain common anatomical projection patterns that in turn might
underlie common patterns of thought. Ray’s book is completely
neurobiological, while being admittedly speculative; but he has
left us with a remarkable new vision that promises to move
some of the most “un-soluble” problems in neuroscience—those
involving our experience of consciousness itself–into the realm
of the testable.
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Fig. 4. Hemimegalencephaly before and after hemispherectomy. (A) and (B) show coronal and axial images of a normal brain. (C) and (D) show correspond-
ing images of a patient with hemimegalencephaly affecting the right hemisphere (illustrated on the left) with overgrowth of the affected hemisphere. (E) and (F)
show the results after the entire right hemisphere was removed because of intractable epilepsy, replaced by mere cerebrospinal fluid (bright white). The child,
who had suffered dozens of seizures a day, and was weak on the left because of the abnormal hemisphere, did very well after the surgery, going on to learn to
walk, speak fluently, and read at grade level. Adapted from Poduri et al. (2012).
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