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The genetic architecture of ASD is complex. Common vari-
ants, rare variants and germline de novo variants contribute 
substantially to risk1–3. Germline de novo CNVs (dnCNVs) 

play a central role, with such events observed in 5–10% of ASD 
probands4–6. Archetypal dnCNVs are recurrently observed in ASD 
probands, including duplications of 15q11–13, duplications and 
deletions of 16p11.2 and focal deletions of NRXN1 (ref. 6). However, 
despite substantial progress understanding the genetic risk of ASD, 
a large portion of ASD susceptibility cannot be explained by known 
risk variants7,8.

Early-developmental (mosaic) mutations have been proposed as 
a possible source of some unexplained ASD susceptibility9. Unlike 
de novo variants, which occur in parental germ cells and are, thus, 
present in all cells of the body, mosaic mutations arise after fertil-
ization—sometimes during embryonic development10—and are 
present in only a fraction of cells. Nonetheless, both de novo and 
mosaic variants arise free from the reproductive pressures of natural 
selection, and, thus, the hypothesis that mosaic variants contribute 
to sporadic disease is an attractive one. Several studies have linked 
mosaic single-nucleotide variants to ASD11–13 and causally impli-
cated them in several other neurological disorders14–16. mCNVs 
have recently been linked to developmental disorders17; however, 
the contribution of mCNVs to ASD risk is currently unknown.

In this study, we systematically analyzed mCNVs (gains, losses 
and copy number neutral losses of heterozygosity (CNN-LOH)) 
in 11,457 ASD-affected families using genotype array data from 
the Simons Simplex Collection (SSC)18 and the Simons Powering 
Autism Research for Knowledge (SPARK) datasets19, drawing upon 
recent advances in statistical phasing20 and the pedigree structure  

of the data to sensitively detect mCNVs21. In both cohorts, we 
found a significant burden of mCNVs in probands relative to their 
unaffected siblings. This burden was driven by the presence of 
large (>4-Mb) mCNVs in probands, and increased event size sig-
nificantly associated with increased severity of ASD symptoms. We 
additionally computationally detected and experimentally validated 
two mCNVs present in whole-genome sequencing (WGS) of brain 
tissue from an additional 59 probands. These results provide strong 
evidence that mCNVs contribute to ASD risk.

Results
Detection of mCNVs in ASD cohorts. We sought to character-
ize the contribution of mCNVs arising during early development 
to ASD risk. We analyzed blood-derived genotype array intensity 
data from 2,591 autism-affected families in the SSC cohort18 and 
saliva-derived genotype intensity data from 8,866 autism-affected 
families in the SPARK cohort19. All SSC probands and siblings were 
3–18 years old at enrollment; most SPARK probands and siblings 
were in or near the same age range, with a small fraction of older 
probands (1.2% between the ages of 30 and 40 and 0.3% over the age 
of 40; Supplementary Fig. 1a). After data quality control (Methods), 
12,077 probands and 5,500 siblings remained (Table 1). On aver-
age, 900,935 genotyped variants remained in SSC samples and 
579,300 in SPARK samples, due to differences in genotyping density 
between arrays.

We performed haplotype phasing using both a population refer-
ence panel and the pedigree structure of the data to obtain near-perfect 
long-range phase information in offspring. We leveraged the  
phase information to sensitively detect mCNVs in autosomes of  
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probands and siblings using Mosaic Chromosomal Alterations 
caller (MoChA)22 and checked parental genotypes to ensure that 
events were not germline (Methods; see URLs). We excluded sex 
chromosomes to avoid confounding from the imbalanced sex ratio 
between probands and siblings (9,776:2,301 males:females in pro-
bands versus 2,718:2,782 in siblings). Following previous studies21,23, 
we filtered mCNV calls that exhibited evidence of DNA contamina-
tion, and we restricted our analysis to events for which copy number 
state could be confidently determined (Methods and Supplementary  
Fig. 2). We further excluded mCNVs frequently observed in 
age-related clonal hematopoiesis (specifically, focal deletions at IGH 
and IGL and low-cell-fraction CNN-LOH events21,23–25), which we 
expected to be present in a very small fraction of samples (<1%, 
given the young ages of participants) and unrelated to ASD status. 
We verified that genotyping intensity deviations within the remain-
ing mCNVs were consistent with estimated mosaic cell fraction and 
copy number state (Supplementary Fig. 3).

We detected 64 mCNVs in 59 individuals (35 gains, 24 losses 
and five CNN-LOH in 0.34% of SSC and SPARK samples; 
Table 1 and Supplementary Table 1) ranging in cell fraction—
ie, proportion of cells harboring a mosaic event—from 2.8% to 
73.8% (median = 27.1%) and in size from 49.3 kb to 249.2 Mb 
(median = 2.5 Mb) (Fig. 1a). All but one carrier was younger than 
28 years (oldest: 47 years; median: 12 years). Of the 64 detected 
mCNVs, 45 events were present in 44 unique probands (0.36%), 
and 19 events were present in 15 unique siblings (0.27%), with 
one sibling carrying five events on a single chromosome, reminis-
cent of chromothripsis (Supplementary Fig. 4 and Supplementary  
Note 1). Consistent with our filtering of age-related clonal hema-
topoiesis events, we did not observe a significant increase in 
mCNV detection rate with increasing age in SPARK samples 
(Supplementary Fig. 1b; individual age information was not avail-
able for SSC samples). We also did not observe a bias in the parental 
haplotype on which mCNVs were located (Supplementary Table 1, 
Supplementary Fig. 5 and Methods).

Due to the higher genotyping density in SSC, we had slightly 
greater power to detect short events in this cohort. To ensure that 
results were not driven by this sensitivity difference, we recalled 
events in SSC after randomly subsampling genotyped variants to 
the density of the SPARK arrays. We found that mCNV discov-
ery was robust to genotype density, with perfect recall for mCNVs 
>1 Mb in size (Supplementary Fig. 6, Supplementary Table 2 and 
Supplementary Note 2).

ASD probands carry a burden of large mCNVs. We investigated 
whether mCNVs in probands had properties distinguishing them 
from mCNVs in siblings. The size distribution of mCNVs was mark-
edly different between the two groups (Fig. 1a and Supplementary 
Fig. 7a): probands carried mCNVs that were an order of magnitude 
longer, on average, than those in siblings (median length = 7.8 Mb 
versus 0.59 Mb, P = 1.6 × 10−3, Mann–Whitney U-test; Fig. 1a,b),  
a trend apparent at the cohort level, consistent across copy number  

states and robust to genotyping density and the exclusion of 
CNN-LOH events (Fig. 1b, Supplementary Figs. 7b and 8 and 
Supplementary Note 3). We did not observe a significant differ-
ence between mosaic cell fractions of mCNVs in probands and 
siblings (Supplementary Fig. 9), although this might reflect our lim-
ited power to detect mCNVs present in small proportions of cells 
(Supplementary Note 4 and Supplementary Fig. 10)

In both cohorts, we observed a significant burden in probands 
of mCNVs >4 Mb (P = 0.043 in SSC and P = 6.6 × 10−3 in SPARK, 
one-sided Fisher’s exact test; Fig. 1c and Supplementary Fig. 7c), 
a conclusion further strengthened by meta-analysis of the two 
cohorts (Liptak’s combined P = 1.2 × 10−3). We, thus, pooled events 
from both cohorts to maximize our statistical power26.

Of mCNVs >4 Mb long, 25 were carried by probands, and only 
one was found in a sibling. This significant burden in probands 
of mCNVs >4 Mb (odds ratio = 11.4, 95% confidence interval 
(CI) = 1.5–84.2, one-sided Fisher’s exact test, P = 7.4 × 10−4) was 
robust to the exclusion of CNN-LOH events (P = 4.0 × 10−3); robust 
to the exclusion of carriers >20 years old (P = 1.7 × 10−3); unaf-
fected by sensitivity differences to small CNVs between SSC and 
SPARK (Supplementary Fig. 7c); and robust to the choice of the 
4-Mb length threshold (P = 1.9 × 10−3 after multiple hypothesis cor-
rection to adjust for considering all possible thresholds; Methods). 
The burden was technically significant for smaller choices of thresh-
old as well (eg, events >1 Mb and >2 Mb, P = 0.018 and P = 0.013, 
respectively; Fig. 1d, Supplementary Fig. 7d and Supplementary 
Fig. 11). However, these results were driven almost exclusively by 
events >4 Mb in size (Supplementary Note 5). These results imply 
an excess of large mCNVs in ~0.2% of ASD cases (95% CI = 0.08–
0.29%; Methods). Coupled with the observation that such CNVs 
appear to be extremely rare in unaffected individuals, this finding 
suggests that large mCNVs contribute substantial ASD risk to a 
small number of carriers.

We wondered whether some mCNVs <4 Mb in probands might 
contribute to ASD by altering dosages of specific genes previously 
implicated in autism susceptibility (‘ASD genes’). We analyzed 
overlap of mCNVs with a curated set of 222 high-confidence ASD 
genes from the SFARI Gene database (Methods). Smaller (<4-Mb) 
mCNVs in probands overlapped ASD genes more often than 
expected by chance (Expected = 1.42, Observed = 4; P = 0.044), in 
contrast to smaller mCNVs in unaffected siblings (Expected = 1.69, 
Observed = 1; P = 0.84), suggesting that some smaller mCNVs 
might also contribute to the etiology of ASD. (This analysis was 
uninformative for large mCNVs, most of which are expected to 
overlap at least one ASD gene by chance.)

When possible, we verified that probands carrying an mCNV 
did not carry other high-risk germline genetic mutations. Of 15 SSC 
probands with mCNVs, four also carried previously reported dnC-
NVs6; only one was >1 Mb in size; and none overlapped ASD genes. 
One proband with an mCNV also carried a previously reported 
de novo loss-of-function variant in AFM27, a gene with no known 
connection to ASD (Supplementary Table 3). Compared to other 

Table 1 | Counts of samples carrying mCNVs

Total samples Samples with mCNVs 
(no. of events)

% occurrence Samples with gain 
(no. of events)

Samples with loss 
(no. of events)

Samples with 
CNN-LOH (of events)

SSC Probands 2,594 15 (16) 0.58 3 (3) 12 (13) 0 (0)a

Siblings 2,424 13 (17) 0.54 9 (11) 4 (6) 0 (0)

SPARK Probands 9,483 29 (29) 0.31 20 (20) 4 (4) 5 (5)

Siblings 3,076 2 (2) 0.07 1 (1) 1 (1) 0 (0)

The modestly increased rate of detection in SSC is consistent with the higher density of genotyped variants in SSC relative to SPARK samples. No difference in rates was observed when restricting to 
mCNVs >4 Mb (Fig. 1). aThe absence of CNN-LOH events in SSC was unsurprising given the smaller sample size of SSC compared to SPARK (P = 0.33, two-sided Fisher’s exact test for comparing CNN-LOH 
frequency in SSC versus SPARK; P = 0.59, two-sided Fisher’s exact test for a comparison restricted to probands).
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probands in SSC, this group also did not carry excess risk from 
common variants significantly associated with ASD28 (P = 0.46, 
Mann–Whitney U-test; Methods), although our power was lim-
ited. (We were unable to perform an equivalent analysis for SPARK 
probands because curated sets of de novo germline CNVs and 
loss-of-function variants are not yet available for this cohort). These 
results indicate that mCNVs comprise orthogonal genetic aberra-
tions that independently contribute ASD risk.

Differences between germline and mosaic CNVs. Interestingly, 
mCNVs in probands had characteristics different from germline 
dnCNVs previously reported in SSC probands. mCNVs were sig-
nificantly larger than dnCNVs (median length = 7.8 Mb versus 
0.92 Mb, P = 7.3 × 10−5; Fig. 2a; we limited this comparison to dnC-
NVs >100 kb, the approximate detection threshold of our mCNV 
identification algorithm). This trend was consistent when mCNVs 
were compared to dnCNVs previously reported in the Autism 
Genome Project29, and putative dnCNVs we identified in SPARK 
(Supplementary Fig. 12 and Supplementary Note 6). Moreover, 
mCNVs did not exhibit focal recurrence in any genomic location, 
although we did observe three events with breakpoints near NTNG1 
(encoding netrin G1), in which rare mutations have been identified in 
individuals with ASD30 (Supplementary Fig. 13 and Supplementary 
Note 7). Moreover, mosaic versions of ASD-associated dnCNVs that 
have been recurrently observed in ASD probands6 (ASD-dnCNVs; 

eg, 16p11.2 deletion/duplication and 22q11.2 deletion/duplica-
tion) were notably absent from ASD probands compared to rates 
of ASD-dnCNVs (0 of 40 mosaic events versus 55 of 132 dnCNVs, 
as reported in Table 1 in Sanders et al.6) (P = 4.2 × 10−6, one-sided 
Fisher’s exact test) (Fig. 2b and Supplementary Note 8).

We hypothesized that such mosaic analogues of ASD-dnCNVs 
1) might be very rare or 2) might confer little or no ASD risk. To 
obtain further insight into both questions, we examined mosaic 
events previously detected in a population sample of 454,993 indi-
viduals of European ancestry in the UK Biobank22. Mosaic ana-
logues of ASD-dnCNVs occurred much more rarely than their 
germline counterparts (Fig. 2b and Supplementary Table 4); of 
eight previously reported ASD-dnCNVs6, only 16p11.2 deletions 
were detected recurrently in the mosaic state (in 73 UK Biobank 
samples comprising 0.016% of the cohort; Supplementary Note 9). 
Mosaic status was not associated with mental health conditions 
(Supplementary Table 5), although our power was very limited by 
the sparsity of reported mental health diagnoses.

To better understand the phenotypic relationship between germ-
line ASD-dnCNVs and mosaic analogues, we identified carriers 
of germline 16p11.2 deletions in the UK Biobank (Supplementary 
Fig. 14 and Methods) and compared their phenotypes to those of 
mosaic 16p11.2 deletion carriers. Although we were underpow-
ered to directly measure ASD risk conferred by 16p11.2 deletions,  
we could compare the effects of germline and mosaic 16p11.2  
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deletions on quantitative traits measured in the UK Biobank. 
Consistent with previous reports31–33, germline 16p11.2 deletions 
were strongly associated with several traits, including fewer years 
of education, increased body mass index and decreased height. 
However, mosaic 16p11.2 deletions were not associated with any 
of these traits (Fig. 2c) even when restricting to events at high cell 
fractions (Supplementary Table 6). These data reinforce our obser-
vation that the burden of mCNVs in ASD probands was driven by 
large mCNVs that disrupted large swaths of the genome; smaller 
mCNVs might generally have limited phenotypic consequences, 
even when disrupting ASD-associated regions.

mCNV length associates with ASD phenotype severity. We next 
determined whether properties of mCNVs carried by probands were 
associated with ASD severity in these probands. ASD phenotypes 
were assessed with three measures common to both the SSC and 
SPARK cohorts, of which one measure—the Social Communication 
Questionnaire (SCQ)—was available for most proband mCNV car-
riers in both cohorts (13 of 17 SSC carriers and 20 of 29 SPARK car-
riers; Supplementary Table 1). The SCQ is a standardized evaluation 
form completed by a parent who rates an individual’s symptomatic 
severity throughout his or her developmental history; higher scores 

reflect a more severe ASD phenotype. Larger mCNV size signifi-
cantly correlated with increased ASD severity as quantified by SCQ 
score (Fig. 3; Pearson correlation r = 0.43, P = 0.016). The longest 
mCNVs were CNN-LOH events; such events can both modify gene 
expression within imprinted regions and convert heterozygous 
gene-disrupting variants to the homozygous state (Supplementary 
Table 7 and Supplementary Note 10). These results further highlight 
the important role of size when considering the potential pathoge-
nicity of a mosaic event: larger mCNVs appear to be more likely to 
both result in ASD and produce more severe phenotypes. We did 
not observe an association between mCNV cell fraction and pheno-
typic severity (Fig. 3 and Supplementary Fig. 15).

Identification of a complex mCNV in brain tissue. Although 
mCNVs are uncommon, they have been previously identified in 
subsets of single neurons in both normal and diseased brain tis-
sue34,35. Their presence in a subset of cells presents the opportunity 
to identify essential cell types for a phenotype; thus, we sought to 
computationally identify and experimentally validate mCNVs 
directly in brain tissue, although we reasoned that the mCNVs we 
ascertained from blood- and saliva-derived DNA were likely present 
throughout the body given their moderate-to-high cell fractions36 
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and the young ages of carriers. We performed WGS of postmortem 
brain tissue from an additional 60 probands obtained through the 
National Institutes of Health Neurobiobank and Autism BrainNet 
(Supplementary Table 8). We genotyped germline variants using 
GATK HaplotypeCaller best practices37 and identified mCNVs 
using MoChA (Methods).

We found two mosaic events (Supplementary Table 9): a mosaic 
10.3-Mb gain of 2pcen-2q11.2 in sample AN09412 (Fig. 4a) and a 
mosaic loss of Y in ABN_XVTN. We also discovered nine germ-
line CNVs overlapping ASD genes in other individuals, revealing 
potential causes of disease in several previously unresolved cases 
(Supplementary Table 10, Supplementary Fig. 16 and Supplementary 
Note 11).

The gain event on chromosome 2 in AN09412 was unique in 
that it appeared to exhibit three segments with varying degrees of 
mosaicism (Fig. 4a). Using phased allele fractions of germline het-
erozygous single-nucleotide polymorphisms (SNPs) and depth of 
coverage of sequencing reads, we estimated that the three segments 
were present in a ratio of 1:3:2 (Fig. 4b). Breakpoint analysis using 
split reads and discordantly mapped reads revealed three break-
points (Supplementary Table 11): a tail-to-tail (T2T) inversion of 
92.03–99.78 Mb, a tandem duplication (TD) of 99.87–101.94 Mb 
and a head-to-head (H2H) inversion located at 102.38 Mb, each of 
which corresponded to one of the three segments. Using this infor-
mation, we reconstructed a parsimonious linear structure of the 
event (Fig. 4c and Methods) consistent with gain of a single complex 
rearrangement present in 26% of cells (Fig. 4b).

Using quantitative digital droplet polymerse chain reaction 
(ddPCR), we confirmed that the three breakpoints were present in 
both neurons and non-neurons at a 26–36% mosaic cell fraction 
(Fig. 4d), indicating that the mCNV arose in a fetal progenitor that 
gave rise to both neurons and glial cells. (Non-brain tissue was not 
available for this sample, so we could not investigate the presence 
of the CNV elsewhere.) We further confirmed, using single-cell 
ddPCR (Fig. 4d), that all three breakpoints occurred within  
individual neurons and, using gel electrophoresis, that none 

of the breakpoints were present in DNA from a control brain 
(Supplementary Fig. 17), suggesting that the CNV arose from a 
single event, likely at a very early stage of development. Although 
the clinical significance of this complex mosaic CNV is uncertain, 
it disrupts the same region as multiple pathogenic events reported 
in the DECIPHER database that are associated with intellectual and 
developmental disability38,39 (Supplementary Fig. 18).

We also validated the mosaic loss of Y in ABN_XVTN 
(Supplementary Fig. 17) and determined that the loss was limited 
to non-neuronal cell populations. This finding was unsurprising 
given that the ABN_XVTN donor was 74 years old (the oldest in 
the cohort), and age-related loss of Y has been reported extensively 
in blood40 and, more recently, in aging brain tissue41.

These results complement our analyses of mCNVs in large ASD 
cohorts, in which we analyzed DNA derived from blood and saliva 
under the assumption that mCNVs detected at moderate-to-high 
cell fractions were likely present throughout the body. Our valida-
tion of an mCNV in post-mitotic neurons of AN09412 indicates 
that mCNVs can arise during early development and propagate to 
multiple cell lineages in the adult body.

Discussion
Here we demonstrate that large mCNVs contribute a modest but 
important component to ASD risk, at a rate about 20× lower than 
germline dnCNVs (~0.2% versus ~5% excess in probands), which 
are strongly associated with increased risk of ASD4–6. Whereas very 
large (>4-Mb) germline CNVs are rare in both affected and unaf-
fected individuals6,42, very large mCNVs accounted for a substantial 
proportion of mosaic chromosomal aberrations that we observed. 
Although the threshold of >4 Mb is larger than those generally  
used in clinical interpretation of germline CNVs43, our power to 
assess a burden below this threshold was extremely limited (as we 
only observed five mCNVs of size 1–4 Mb in probands and four 
in siblings). We, thus, selected 4 Mb as the size threshold for our 
primary analyses.

Large mCNVs significantly increased ASD risk, and increasing 
mCNV size correlated with increasing ASD severity in affected indi-
viduals. In contrast, smaller, ASD-associated CNVs (such as 16p11.2 
deletion) appeared to have limited phenotypic consequences in the 
mosaic state, suggesting that mosaic and germline CNVs might 
result in autism by fairly different mechanisms: the recurrent ASD 
CNVs (eg, 16p11.2 and 22q11.2) appear to be required in most cells 
to create disability, whereas the mosaic events are typically larger 
and, hence, likely more toxic but limited to a fraction of cells. We 
hypothesize that these events are not observed as germline ASD 
events because large mCNVs are more survivable than very large 
germline CNVs, which commonly cause spontaneous miscarriage44.

Assessing the clinical significance of the identified mCNVs was 
challenging not only because of their large size and lack of analogous 
germline CNVs but also because of the phenotypic heterogeneity of 
ASD45 and the limited phenotype data provided for each proband. 
Nonetheless, we observed several mCNVs with possible connec-
tions to the individual’s phenotype (Supplementary Figs. 19–22 and 
Supplementary Notes 12–14). These included 1) an individual with 
a mosaic 18q distal deletion who had no verbal communication at 
47 years of age, which is a common feature of germline 18q distal 
deletions46; 2) a proband with a germline–mosaic compound hetero-
zygous knockout of NRXN1: the proband carried a mosaic NRXN1 
deletion on the paternal haplotype and an inherited rare start-lost 
germline variant on the maternal allele; and 3) a proband with an 
acquired paternal uniparental disomy (UPD) of 11p and reported 
growth delays reminiscent of germline disruption of the 11p15.5 
imprinted region. These anecdotes hint at possible molecular mech-
anisms and clinical consequences of mCNVs, which are likely to be 
even more complex and heterogeneous. For example, we discovered 
an apparent partial mosaic rescue in which a mosaic duplication 
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appeared to revert an 8-Mb de novo germline deletion of distal 22q. 
We also observed mosaic UPD and CNN-LOH of chromosome 1 
and 2 (two events on each chromosome), each of which converted 
heterozygous gene-disrupting variants to the homozygous state, but 
their clinical relevance was of unknown significance.

Although our results provide strong evidence that large mCNVs 
confer ASD risk, our study does have limitations that suggest ave-
nues for future exploration. The modest number of mCNVs that 
we detected precluded investigating properties of mCNVs such as 
burdens at smaller length scales (eg, 1–4 Mb), recurrence patterns, 
effects of mosaic cell fraction on phenotype and genetic or environ-
mental factors that predispose an individual to mosaic copy number 
variation. These factors limited our ability to precisely estimate the 
ASD risk that mCNVs confer. As deeply phenotyped ASD case–
control cohorts continue to expand, we think that these questions 
will become answerable, and risk estimates will be further refined.

Moreover, our analysis of mosaic analogues of ASD-associated 
dnCNVs in the UK Biobank provides useful, although incom-
plete, insight into the phenotypic consequences of mCNVs. As a 
population-level resource, the UK Biobank has some ascertainment 
bias for healthy individuals47, and, thus, affected carriers might be 

underrepresented. We think that this is unlikely to strongly bias 
our results because carriers of large-effect variants are not fully 
excluded, as verified by the presence of 121 carriers of 16p11.2 
germline deletions with the expected phenotypes (eg, mean height 
reduced by 1.2 s.d.). In addition, the cell fraction of a mosaic event 
is likely associated with phenotypic outcome, although the nature 
of this relationship remains an open question. Although we did 
not observe significant effect sizes when restricting to carriers of 
high-cell-fraction 16p11.2 mosaic deletions, our statistical power 
was limited by the small number of carriers (n = 35). Indeed, dis-
tinguishing between germline CNVs and very-high-cell-fraction 
mCNVs is extremely difficult, and it is likely that germline analy-
ses have inadvertently included some high-cell-fraction mCNVs  
and that our analysis might have inadvertently excluded some of 
these events.

Additionally, although we demonstrated the existence of mCNVs 
in a small set of postmortem brain tissue samples, our primary 
analyses relied on mCNVs computationally ascertained from blood 
and saliva genotyping available in large cohorts. We think that most 
of these mCNVs represent true early-developmental mutations 
present across tissues (based on high cell fractions, young ages of 
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participants and conservative filters to exclude clonal hematopoi-
esis events), but caution is nonetheless warranted in interpreting 
our results and similar analyses of peripheral tissues. As efforts to 
directly assay the genome of the brain expand48,49, we expect the risk 
contribution and molecular mechanisms of mCNVs to be further 
refined for both ASD and other neurodevelopmental disorders.
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Methods
Genotyping intensity data. Genotyping intensity data for probands, siblings and 
parents in SSC and SPARK were obtained from SFARI Base. For each genotyped 
position, the data included the genotype call, the B allele frequency (BAF; 
proportion of B allele) and log R ratio (LRR; total genotyping intensity of A and B 
alleles) as provided by SSC and SPARK. Further information is available in the Life 
Sciences Reporting Summary.

Three types of genotyping arrays were used for SSC samples: Illumina 1Mv1 
(n = 1,354 individuals), Illumina 1Mv3 (n = 4,626 individuals) and Illumina Omni2.5 
(n = 4,240 individuals). Details of data generation were previously described in 
Sanders et al.6. SPARK samples (n = 27,376 individuals) were genotyped on the 
Illumina Infinium Global Screening Array-24 v.1.0. Details were previously described 
in Feliciano et al.19,51. We did not analyze those SPARK samples that were previously 
genotyped on a different array as part of a pilot study (n = 1,361 individuals).

We defined probands to be individuals with a diagnosis of ASD. We defined 
‘unaffected siblings’ as family members without an ASD diagnosis in the same 
generation as a proband (most of which were siblings). We defined parents as 
unaffected individuals with a proband as a biological child.

Converting Illumina Final Reports to BCF format. Genotyping intensity data 
for SSC were distributed in the Illumina Final Report format, with genotyped 
positions reported with respect to the hg18 human reference genome. Positions 
were lifted over to hg19 coordinates based on rsID number. Positions without 
an rsID were discarded. Final Reports were converted to the BCF format, and 
genotypes were converted from Illumina TOP-BOT format to dbSNP REF-ALT 
format using custom in-house scripts (positions for which TOP-BOT format could 
not be unambiguously converted to REF-ALT format were discarded). Samples 
from each of the three arrays were processed as separate batches.

Genotyping intensity data for SPARK were converted from PLINK PED format 
to BCF format using the recode option in plink1.9. Genotypes were converted from 
Illumina TOP-BOT format to dbSNP REF-ALT format using a modified version 
of the bcftools plugin fixref (URLs). Only single-nucleotide variants were retained 
for analysis.

LRR de-noising for SPARK samples. We observed genome-wide spatial 
autocorrelation ‘wave’ patterns52 in many SPARK samples. Because the wave 
pattern was consistent across samples for each chromosome, we corrected the bias 
using the following algorithm based on principal components analysis (PCA):

	1.	 Determine the mean LRR per chromosome per sample. For each sample, 
mean shift the LRR signal genome wide by the median of chromosome means 
for that sample.

	2.	 For chromosome i:

	a.	 Determine the cohort-wide LRR deviation for the chromosome i as the 
median of mean chromosome i LRR signal across samples. Mean shift each 
sample’s chromosome i LRR signal by the cohort-wide LRR deviation.

	i.	 To prevent confounding due to sex, this correction is performed indepen-
dently for males and females.

	3.	 For each chromosome i:

	a.	 Project the LRR matrix (number of samples by number of genotyped posi-
tions on chromosome i) onto the space spanned by its top k principal compo-
nents. Subtract the projected matrix from the full LRR matrix.

Steps 1 and 2 of the algorithm mean center the LRR signal genome wide across 
an individual and per chromosome across the cohort. This is necessary to prevent 
PCA from projecting away mean shifts due to large mCNVs. Step 3 removes the 
variance explained by the top k principal components. In practice, we found that 
k = 10 effectively removed the wave pattern (Supplementary Fig. 23).

PCA analysis was performed using the PCA method from the Python package 
sklearn53, which implements efficient PCA using randomized singular-value 
decomposition. LRR values were extracted from BCF files using ‘bcftools query’, 
and corrected values were incorporated into BCF files using ‘bcftools annotate‘. 
One sample with >5% genotype missingness was excluded from the correction 
procedure. On average across autosomes, the top ten principal components 
explained 57.1% of LRR variance in the SPARK cohort.

Variant-level quality control. We excluded genotyped variants with high levels 
of genotype missingness (>2%), evidence of excess heterozygosity (P < 1 × 10−6, 
one-sided Hardy–Weinberg equilibrium test) and unexpected genotype correlation 
with sex (P < 1 × 10−6, Fisher’s exact test comparing number of 0/0 genotypes 
versus number of 1/1 genotypes in males and in females). We also excluded 
genotyped variants falling within segmental duplications with low divergence 
(<2%). Variant-level quality control was performed for each array independently. 
The number of genotyped variants and number of variants excluded by quality 
control are listed in Supplementary Table 12.

Sample-level quality control. We calculated two statistics to detect sample 
contamination: BAF concordance and BAF autocorrelation. Given that a 

heterozygous SNP has a BAF > 0.5 (<0.5), BAF concordance is the probability that 
the following heterozygous SNP has BAF >0.5 (<0.5). BAF autocorrelation is the 
correlation of the BAF at a heterozygous SNP with the BAF at the neighboring 
(downstream) heterozygous SNP. For each sample, we calculated the statistic for 
each chromosome independently and took the median across all chromosomes as 
the sample value.

Neighboring positions with heterozygous genotypes in the genome are 
expected to have uncorrelated genotype intensity measures on an array. BAF 
concordance and BAF autocorrelation significantly higher than, respectively, 0.5 
and 0 could reflect sample contamination with DNA from another individual, 
because allelic intensities will be correlated at variants within haplotypes shared 
between the sample DNA and contaminating DNA. In SSC, we removed samples 
with a BAF concordance >0.51 or a BAF autocorrelation >0.03, resulting in 
the exclusion of 11 probands and nine siblings. We also excluded an additional 
proband (array ID: 7306256088_R02C01) with evidence of a large amplitude LRR 
wave pattern. In total, 2,594 probands and 2,424 siblings from SSC passed quality 
control (Supplementary Table 13).

In SPARK, we observed genome-wide evidence of BAF correlation between 
contiguous genotyped positions in high-quality samples. Thus, BAF concordance 
and BAF autocorrelation were not informative measures of contamination. Instead, 
we excluded samples with evidence of multiple very-low-cell-fraction CNN-LOH 
events (<10% of cells and LRR deviation from zero <0.2) because the probability of 
observing two or more true CNN-LOH events in a sample was exceedingly small 
given the young age of the individuals. We further removed any samples from 
individuals who had also participated in SSC (n = 352) and one additional proband 
(SP0072755) that had an uncorrected LRR wave pattern after LRR de-noising, 
resulting in exclusion of 622 probands and 54 siblings. Finally, we removed 37 
siblings with a reported genetic diagnosis (of which one carried an mCNV; see 
main text). In total, 9,483 probands and 3,076 siblings from SPARK passed quality 
control (Supplementary Table 13).

Haplotype phasing. We used Eagle2 (ref. 20) (default settings) and the Haplotype 
Reference Consortium54 phasing panel to perform statistical haplotype phasing 
of SSC samples. We performed phasing for each genotyping array independently. 
For probands and siblings, we additionally used parental genotypes to correct 
phase-switch errors using the bcftools plugin trio-phase included with 
MoChA. Given the size of the SPARK cohort (>27,000 samples), we performed 
within-cohort statistical phasing using Eagle2. We additionally corrected proband 
and sibling phase estimates using parental genotyping data when available (at least 
one parent was also genotyped for the vast majority of probands and siblings). The 
combination of statistical haplotype phasing and pedigree-based phasing resulted 
in near-perfect long-range phase information without phase-switch errors.

Discovery of mCNVs. We applied MoChA to each genotyping array batch 
independently to detect mCNVs. The general statistical approach implemented 
in MoChA was previously described21. In brief, mCNVs result in allelic imbalance 
between the maternal and paternal haplotypes. Thus, the BAF of heterozygous 
SNPs within an mCNV will consistently deviate from the expected value of 0.5 
toward either the paternal allele or the maternal allele. Such deviations can be 
sensitively detected even at low cell fractions using long-range phase information, 
provided that the event is long enough to contain multiple genotyped heterozygous 
SNPs. Formally, MoChA uses a hidden Markov model (HMM) to search for 
consistent deviations. Gains (losses) also result in an increase (decrease) of total 
LRR signal with magnitude proportional to the cell fraction of the event; an HMM 
can also be used to detect LRR deviations from zero. Incorporation of phase 
information particularly increases sensitivity to detect large, low-cell-fraction 
CNVs relative to previous models21.

The details of MoChA differ from the previously described approach in 
two ways. First, MoChA uses two independent models to search for mCNVs: a 
haplotype phase model (BAF + phase) as described in Loh et al.21 and an LRR and 
(unphased) BAF model (LRR + BAF) similar to previous models for the detection 
of germline CNVs55. A CNV is reported if it is discovered by either model. 
The introduction of the LRR + BAF model enables detection of germline (or 
very-high-cell-fraction mosaic) losses and germline duplications including more 
than two haplotypes. Second, MoChA uses the Viterbi algorithm to search for 
deviations in either the phased BAF signal or the LRR signal instead of computing 
total likelihoods and applying a likelihood ratio test. The Viterbi algorithm is more 
direct, but its calibration is less precise when detecting very-low-cell-fraction 
events. However, because we were interested in higher cell fraction mCNVs arising 
during early embryogenesis, such sensitivity was not necessary for this study.

Central to the sensitivity of MoChA is the quality of the long-range phase 
information. As discussed above, the combination of statistical haplotype phasing 
and pedigree phasing using parental genotypes resulted in near-perfect long-range 
phase information without phase-switch errors.

Classification of mosaic copy number state. We needed to sensitively distinguish 
age-related and early-developmental mCNVs in a way that was robust to LRR 
signal noise due to, for example, guanine–cytosine (GC) content. Previous work on 
mCNVs did not typically distinguish between age-related and early-developmental 
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events. Thus, we developed a new statistical method to classify events as gains, 
losses, CNN-LOH or unknown using an expectation–maximization (EM) algorithm 
similar to k-means clustering where each cluster is defined by a line instead of 
a centroid. Let X = |ΔBAF| be the absolute deviation from 0.5 of phased BAF 
estimated across an event; let Y = |ΔLRR| be the absolute deviation from zero for 
LRR estimated across an event; and let C∈ {Gain, Loss, CNN-LOH} denote the copy 
number state of the mosaic mutation. Then, for gains, X and Y will linearly increase 
according to Y ¼ XβGain þ ϵ

I
, where βGain > 0; for losses, Y will linearly decrease as 

X increases according to Y ¼ XβLoss þ ϵ
I

, where βLoss<0; and for CNN-LOH, Y ¼ ϵ
I

, 
where ϵ  Nð0; σ2Þ

I
 is Gaussian noise in the estimation of X and Y.

Given a set of events, the parameters of the linear models and the copy number 
state Ci for each event i are unknown. We, thus, iteratively apply the following 
custom EM algorithm:

	1.	 Randomly initialize βGain∈(0,3] and βLoss∈[−3,0) d set βCNN−LOH = 0
	2.	 Assign each event i a copy number state Ci using least-squares classification: 

Ci ¼ argmaxC Yi � Xiβ
2
c

�� ��:
I	3.	 Estimate the linear model parameters βC for C∈{Gain,Loss} using univariate 

linear regression without an intercept term applied to all events assigned to 
class C in Step 2:

βc ¼
P

ðijCi¼CÞ XiYiP
ðijCi¼CÞ X

2
i

	a.	 Because βCNN−LOH = 0 is known, it is not re-estimated.

	4.	 Repeat Steps 2 and 3 until convergence.
	5.	 Estimate σGain and σLoss using univariate linear regression on the events classi-

fied as gains and losses, respectively.

To classify mCNV copy number states in probands and siblings, the model 
was first trained on mCNVs in parents (after removal of germline CNVs). Events 
in probands and siblings were then classified using the linear model parameters 
estimated from the parents. The method implicitly accounts for errors in LRR and 
BAF measures and, thus, is robust to noise in these signals.

We applied an additional step to improve classification of events extending 
to telomeres, given that CNN-LOH events generally arise due to mitotic 
recombination and, therefore, terminate at a telomere. To ensure that apparent 
gains and losses terminating at a telomere were not misclassifications, we 
calculated the Bayes factor to compare the likelihood that the event arose under the 
Gain or Loss model against the likelihood under the CNN-LOH model:

B ¼ exp � Y � XβCð Þ2=2σ2C
� �

exp �Y2=2σ2C
� �

where C∈{Gain,Loss} and σC is the s.d. estimated from fitting the model on 
parental data. If B < 10 for a putative gain or loss terminating at a telomere, the 
copy number state was reclassified as unknown.

Filtration of mCNV calls. In probands and siblings. Following Sanders et al.5, 
we required all potential mCNVs to overlap at least 20 heterozygous SNP sites. 
We then excluded germline events and events likely to arise due to age-related 
clonal hematopoiesis. To remove germline events, we filtered all events designated 
as a ‘copy number polymorphism’ by MoChA. Given a panel of known CNV 
polymorphisms (1000 Genomes Project in this case), for each sample and each 
segment in the list of polymorphisms, MoChA checks for evidence of 1) germline 
copy number alteration within the segment and 2) diploid copy number in the 
regions on either side of the segment. A segment within a sample satisfying both 
conditions is classified as a copy number polymorphism.

We additionally excluded any event that reciprocally overlapped an event 
found in an individual’s biological parents by >85% or reciprocally overlapped any 
CNV reported in the 1000 Genomes Project42 by >75%. When calculating overlap, 
we accounted for copy number state: overlaps between gains and losses were not 
considered. Finally, we removed any event with an estimated cell fraction >1. 
For gains, we additionally removed any events with |ΔBAF| > 0.11 to ensure that 
germline gains were not misclassified as mosaic, following previous work21,23.

To filter mCNVs likely to have arisen due to clonal hematopoiesis, we excluded 
mCNVs contained within loci commonly altered within the immune system, 
specifically IGH (chr14:105,000,000–108,000,000) and IGL (chr22:22,000,000–
24,000,000). We also excluded CNVs within the extended major histocompatibility 
complex region (chr6:19,000,000–40,000,000) due to the known propensity to 
call false-positive mosaic CNN-LOH events within this locus21. We also removed 
events whose copy number state could not be determined, and, following Vattathil 
et al.23, we classified and removed CNN-LOH events in less than 20% of cells (ie, 
|ΔBAF| < 0.1) as likely clonal hematopoiesis. The filtration of low-cell-fraction 
CNN-LOH removed 73 calls in probands (34 in SSC and 39 in SPARK) and 48 calls 
in siblings (28 in SSC and 20 in SPARK). The rate of low-cell-fraction CNN-LOH 
(<1% in probands and siblings) is consistent with rates observed in individuals 
<45 years old in the UK Biobank21. We further excluded one CNN-LOH event in a 
proband >20 years old because his age (43 years) increased the probability that the 
event could have arisen due to clonal hematopoiesis.

In parents. We also called mCNVs in parents for the purpose of fitting the EM 
model (described above) that we subsequently used to infer copy number state of 
mCNVs in probands and siblings. Before fitting the EM model on events called 
in parents, we filtered events labeled as copy number polymorphisms by MoChA, 
reciprocally overlapping 1000 Genomes Project CNVs by >75%, reciprocally 
overlapping events in other adults by >80% or reciprocally overlapping events in 
non-biological children by >80%.

Determination of haplotype of origin. For mosaic gains and losses, the parental 
haplotype of origin was defined to be the haplotype carrying the mCNV. For 
CNN-LOH, the parental haplotype of origin was defined to be the haplotype 
that was duplicated. To assign haplotype of origin, we calculated the average ALT 
allele frequency of heterozygous SNPs at which the ALT allele was unambiguously 
inherited from the father and the average ALT allele frequency of heterozygous 
SNPs at which the ALT allele was unambiguously inherited from the mother. For 
losses, the haplotype of origin was paternal if the average allele fraction of paternal 
SNPs was less than that of maternal SNPs; otherwise, the haplotype of origin was 
maternal. For gains and CNN-LOH, the haplotype of origin was paternal if the 
average allele fraction of paternal SNPs was greater than that of maternal SNPs; 
otherwise, the haplotype of origin was maternal.

Burden analysis. The statistical significance of the hypothesis that probands 
carry more mCNVs >4 Mb than their unaffected siblings was quantified using a 
one-sided Fisher’s exact test. Using Wilson’s score interval, 95% CIs for the percent 
of samples carrying an mCNV were calculated. To adjust the burden P value 
for multiple possible choices of the size threshold for defining ‘large mCNVs’, 
we performed the following permutation analysis: proband and sibling labels of 
mCNVs were randomly permuted based on the total number of probands and 
siblings in our study. We then determined the P value of the most significant 
burden across all size thresholds for the permutation. This procedure was repeated 
100,000 times. We calculated the threshold-adjusted P value as

Padj ¼
P

i 1ðPi ≥PobsÞ
100; 000

where Pobs is the uncorrected P value from the observed data, Pi is the maximum 
burden P value from permutation i and 1 is the indicator function.

The excess burden of large (> 4-Mb) mCNVs in ASD probands was estimated 
as the difference between the percent of probands carrying a large mCNV and the 
percent of siblings carrying a large mCNV. The 95% CI between proportions was 
estimated using Wilson’s score interval as modified by Newcombe56.

Overlap of mCNVs with ASD genes. We downloaded all genes included in the 
SFARI Gene database of genes implicated in ASD. We restricted the list to the 222 
genes that are classified as ‘Category 1’ (high confidence), ‘Category 2’ (strong 
candidate) or ‘S’ (syndromic). We refer to this restricted list of genes as ‘ASD 
genes’. We determined whether mCNVs overlapped ASD genes by annotating their 
overlap with all genes in the RefSeq database and intersecting the name of the 
RefSeq genes with the ASD gene list.

To determine whether a set of mCNVs overlapped ASD genes more often than 
expected by chance, we randomly permuted the mCNVs in probands around the 
genome K times, excluding assembly gaps >1Mb in size in the hg19 reference. 
After each permutation, we determined the number of segments overlapping 
an ASD gene. Let Nobs be the number of mCNVs overlapping ASD genes in the 
observed data. Let Ni be the number of permuted segments overlapping ASD 
genes in permutation i. The P value of observing Nobs or more overlaps by chance is 

P ¼
P

1 Ni ≥Nobsð Þ
K

I
, where 1 is the indicator function. When testing ASD gene overlap 

for short events (<4Mb), we used K = 10,000. For long events, we used K = 1,000 
for computational efficiency. We excluded CNN-LOH events when testing long 
events because they were too large to be randomly permuted.

Risk from common ASD-associated variants. We obtained variant effect sizes for 
common variants significantly associated with ASD at the genome-wide level (P 
< 5 × 10−8) from Table 1 of Grove et al.28, which is the largest ASD genome-wide 
association study published to date. We obtained genotypes for SSC samples from 
WGS, available for most of the cohort, and we calculated each individual’s risk as 
a linear combination of genotypes weighted by variant effects. We excluded one 
variant (rs71190156) because it had >50% missingness across individuals, and we 
excluded any individual with missing genotypes for any other variant. In total, we 
examined risk from 11 variants in 2,310 probands and 1,868 siblings. Of these, 
ten probands and six siblings carried mCNVs, so our statistical power to compare 
between groups was very limited.

Counts of germline CNVs. Counts of germline ASD-associated CNVs in ASD 
cohorts were obtained from Table 2 of Sanders et al.6, which included samples from 
SSC and the Autism Genome Project. Counts of germline ASD-associated CNVs in 
UK Biobank individuals were obtained from Crawford et al.32.

Identification of 16p11.2 germline deletion carriers in the UK Biobank. We 
extracted LRR and genotype calls from the 16p11.2 ASD-associated region listed in 
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Table 2 of Sanders et al.6 for individuals in the UK Biobank. Germline carriers  
of 16p11.2 deletions were defined as individuals with average LRR < −0.5 and  
<5 heterozygous SNP calls across the region (Supplementary Fig. 10).

Phenotype associations of germline and mCNVs in ASD-associated regions.  
We defined high-confidence ASD-associated CNV regions as those listed in  
Tables 1 and 2 of Sanders et al.6 expanded by ~1.5 Mb on either side 
(Supplementary Table 4 lists the exact expanded regions). We identified carriers 
of mCNVs in the UK Biobank reported by Loh et al.22 falling within the ASD 
regions. We refer to these individuals as ASD-dnCNV-analogue carriers. We 
used self-reported responses to the UK Biobank Mental Health Questionnaire 
to count the number of ASD-dnCNV-analogue carriers with a diagnosis of ASD, 
schizophrenia, bipolar affective disorder, depression or anxiety.

Following Owens et al.31, we quantified the association between carrier status 
of germline or mosaic 16p11.2 deletions and phenotypes using the following linear 
regression model for continuous phenotypes:

yi ¼ xc;iβc þ xage;iβage þ xsex;iβsex þ xarray;iβarray þ
X15

j¼1

xPCj ;iβPCj
þ ϵi

where yi is the phenotype of individual i; xc,i is the 16p11.2 CNV carrier status of 
individual i; xage,i is the age of individual i; xsex,i is the sex of individual i; xarray,i is the 
array used to genotype individual i; xPCj ;i

I
 is the jth genetic principal component 

of individual i; βs are the corresponding effect sizes; and ϵi  Nð0; σ2Þ
I

 is the 
remaining phenotypic variance. For binary phenotypes, we applied logistic 
regression with the same covariates. Continuous phenotypes were inverse-normal 
transformed within sex strata after adjusting for relevant covariates before 
analysis57. We restricted to individuals passing quality control filters from ref. 22 and 
of self-reported European ancestry.

We identified a set of quantitative traits and medical outcomes previously 
associated with 16p11.2 germline deletions31–33,58. The association results for mosaic 
16p11.2 deletions, high-cell-fraction mosaic 16p11.2 deletions (CF > 0.3) and 
germline 16p11.2 deletions for all tested traits are reported in Supplementary Table 
5. Medical phenotypes were coded as binarized versions of the following data fields 
from the UK Biobank Data Showcase: renal failure: 132030, 132032 and 132034; 
obesity: 130792; and heart failure: 131354.

Determining carriers of high-risk germline de novo variants. Curated germline 
dnCNVs and loss-of-function variants in SSC individuals6,27,59 were obtained from 
ref. 6. We cross-referenced our list of mCNV carriers with carriers of dnCNVs and 
loss-of-function variants. For any mCNV carriers who also carried a dnCNV, we 
determined whether the dnCNV overlapped an ASD gene as described above. 
The list of high-confidence germline dnCNVs was also used to estimate the 
size distribution of dnCNVs in Fig. 2a. We removed dnCNVs <100 kb in size to 
account for our limited sensitivity to detect mCNVs below that size threshold.

Genotype–phenotype associations. We obtained phenotype data for individuals 
in SSC and SPARK from SFARI Base (SSC version 15 and SPARK version 2). Of the 
three ASD severity measures shared between SSC and SPARK (the Development 
Coordination Disorder Questionnaire, the Repetitive Behavior Scale-Revised 
and the SCQ), only the SCQ was missing in fewer than 50% of SSC and SPARK 
samples. We measured association between SCQ score and mCNV properties 
(size and cell fraction) using both Pearson and Spearman rank correlation. z 
normalizing SCQ scores independently in SSC and SPARK before association did 
not qualitatively change the results.

Identification of putative damaging variants within mCNVs in SPARK 
individuals. We obtained from SFARI Base exonic SNPs and indels detected in 
WGS data of SPARK individuals. In carriers of mosaic losses and CNN-LOH, we 
identified rare, putative damaging variants within the mCNV, defined as 1) variants 
with cohort variant allele frequency <1% and 2) annotated as ‘High Impact’ 
(start-lost, stop-lost, stop-gain, frameshift, splice-acceptor and splice-donor) or 
annotated as missense with Combined Annotation-Dependent Depletion >20  
(ref. 60) by Variant Effect Predictor61.

Analysis of brain tissue. Human tissue. Postmortem human brain specimens 
were obtained from the Lieber Institute for Brain Development, the Oxford Brain 
Bank and the University of Maryland Brain and Tissue Bank through the National 
Institutes of Health Neurobiobank and from Autism BrainNet. All specimens were 
de-identified, and all research was approved by the institutional review board of 
Boston Children’s Hospital.

DNA extraction and sequencing. DNA was extracted from prefrontal cortex where 
available (or generic cortex in a minority of cases) using lysis buffer from the 
QIAamp DNA Mini Kit (Qiagen) followed by phenol chloroform extraction and 
isopropanol clean-up. Samples UMB4334, UMB4899, UMB4999, UMB5027, 
UMB5115, UMB5176, UMB5297, UMB5302, UMB1638, UMB4671 and UMB797 
were processed at the New York Genome Center using TruSeq Nano DNA 
library preparation (Illumina) followed by Illumina HiSeq X Ten sequencing to a 

minimum 200× depth. All remaining samples were processed at Macrogen using 
TruSeq DNA PCR-Free library preparation (Illumina) followed by minimum 30× 
sequencing of seven libraries on the Illumina HiSeq X Ten sequencer, for a total 
minimum coverage of 210× per sample. All paired-end FASTQ files were aligned 
using BWA-MEM version 0.7.8 to the GRCh37 reference genome, including the 
hs37d5 decoy sequence from the Broad Institute62.

Structural variant validation. For germline events with known breakpoints, 
standard PCR was designed with primers spanning the breakpoint. For mosaic 
events with known breakpoints, custom Taqman assays (Thermo Fisher Scientific) 
were designed to span the breakpoint and subsequently used in ddPCR with 
RNAseP as a reference. For events without known breakpoints, pre-designed 
Taqman copy number assays for the region of interest were ordered and optimized 
with known positive and negative controls when possible. ddPCR was performed 
according to the manufacturer’s instructions (Bio-Rad).

Single-cell sorting. Nuclear preparation and sorting were performed as previously 
described63. Single NeuN+ cells, as well as pools of 100 NeuN+ (neuronal) and 
NeuN− (non-neuronal) cells, were collected and amplified using GenomePlex 
DOP-PCR WGA according to a published protocol64, and samples were purified 
using a QIAquick PCR Purification Kit (Qiagen) before ddPCR analysis. Locus 
dropout is a common feature of whole-genome amplification with GenomePlex 
DOP-PCR WGA.

Detection of mCNVs. mCNVs were detected using MoChA. When running on 
WGS data, MoChA explicitly models read counts of the ALT allele and the REF 
allele using a beta-binomial distribution, where the expected counts are a function 
of the total sequencing depth and the allele balance of the hidden state.

Mosaic copy number estimation. For each segment of the mosaic complex 
duplication, we estimated mosaic copy number from allelic sequencing read 
fractions using the following relationship. Let |ΔBAF| be the average absolute 
deviation from 0.5 of phased allele frequency estimated across a segment. Then, for 
a gain, the estimated mosaic cell fraction in the bulk sample is:

cCF ¼ 2 ΔBAFj j
0:5� jΔBAFj

This corresponds to a mosaic copy number of 2þ cCF
I

 in a diploid genome.
Let DPs

I
 be the average read depth (or LRR) at SNPs within a segment, and let 

DPG
I

 be the average read depth (LRR) at SNPs genome wide. Then, the estimated 
average copy number in the bulk sample is:

fCN ¼ DPs
0:5*DPG

:

When estimating the read depth-based copy number of the complex mosaic 
duplication, we estimated the genome-wide copy read depth using the average 
read depth across all SNP sites on chromosome 1. To account for read depth biases 
(eg, GC content), we inferred the segment’s copy number in each of the other 59 
postmortem brain samples. We then estimated the copy number bias as the average 
deviation from CN = 2 and subtracted this estimate from fCN

I
 to get a corrected 

copy number estimate, cCN
I

. These are the values shown in Fig. 4b. Estimator 
variance is the sum of the estimated variance of fCN

I
 and the estimated variance of 

the bias estimate.

Inferred structure of a complex duplication. We inferred a linear structure of the 
complex duplication consistent with the following observations: three segments 
with relative abundance of +1 copy, +3 copies and +2 copies; a T2T inversion 
fusing 92.04 Mb to 98.78 Mb; a TD of 99.87–101.94 Mb; and an H2H inversion 
fusing 102.382 Mb to 102.383 Mb. We first observed that each breakpoint 
corresponded to a segment with unique copy state: T2T inversion corresponded 
to a +1 copy state, TD to a +3 copy state and H2H to a +2 copy state. We, 
thus, concluded that the TD must result in an additional three copies of 99.87–
101.94 Mb, and the H2H inversion is likely the result of an inverted duplication 
resulting in two copies of ~102.0–102.382 Mb separated by a 1-kb segment 
(102.382–102.383 Mb) in the proper orientation (where the left breakpoint at 
~102.0 Mb is approximate because it is estimated based on discontinuity in allele 
fraction and read depth estimates rather than direct observation). We estimated 
via read depth that the segment 102.382–102.383 Mb is present in a +1 copy state. 
We further concluded that the duplication carries one copy of 92.04–98.78 in an 
inverted 3′–5′ orientation and one copy of 99.78–99.87 Mb in the proper 5′–3′ 
orientation.

Plotting mCNV events. mCNV events with ideograms and gene/region 
annotations were plotted using a modified version of pyGenomeTracks65.

Description of box plots. All box plots have the following properties: center line 
is the median, box limits are upper and lower quartiles and whiskers are 1.5× 
interquartile range. Outliers are not included in Fig. 2a for clarity.
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Statistical analysis. We did not predetermine sample size but, rather, obtained 
all samples currently available from SSC, SPARK and the UK Biobank; the 
resulting sample sizes were similar to or larger than those reported in previous 
publications11,12,17,21,31–33. Data were collected by SSC and SPARK without input from 
the authors. We did not perform randomization beyond that performed by SSC 
and SPARK during sample collection. Because data were received as curated by 
SSC and SPARK, we were not blinded to covariates included with the data. Burden 
and association analyses were performed as described above. Comparisons of CNV 
sizes were performed using Mann–Whitney U-tests. Data met the assumptions for 
all statistical tests.

Accession codes. Accession number for WGS data of postmortem brain from the 
National Institute of Mental Health Data Archive: 1503337.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Data on individuals with ASD and their families were collected by the Simons 
Foundation as part of the Simons Simplex Collection and the Simons Powering 
Autism Research for Knowledge cohort. Mosaic event calls are available in the 
Supplementary Data. Genotype array data and phenotype information for the 
SSC and SPARK cohorts are available from SFARI Base (https://base.sfari.org) 
for approved researchers. Access to the UK Biobank Resource is available via 
application (http://www.ukbiobank.ac.uk/). Data from the DECIPHER database 
are available from https://decipher.sanger.ac.uk/. WGS data of postmortem brain 
tissue are available from the National Institute of Mental Health Data Archive 
under accession number 1503337. Source data are provided for gels shown in 
Supplementary Figs. 16c and 17a.

Code availability
MoChA and custom BCFtools plugins are available on Github via URLs listed 
below. Custom analysis scripts are available from the authors upon reasonable 
request.
URLs:
MOsaic CHromosomal Alterations (MoChA) caller: https://github.com/freeseek/
mocha
BCFtools: https://samtools.github.io/bcftools/bcftools.html
Custom BCFtools plugins: https://github.com/freeseek/gtc2vcf
Eagle2 software: https://data.broadinstitute.org/alkesgroup/Eagle/
PLINK: https://www.cog-genomics.org/plink/1.9/
pyGenomeTracks: https://github.com/deeptools/pyGenomeTracks
1000 Genomes dataset: http://www.1000genomes.org/
Haplotype Reference Consortium: http://www.haplotype-reference- 
consortium.org/.
UK Biobank: http://www.ukbiobank.ac.uk/
SFARI Gene database: https://gene.sfari.org/
SFARI Base: https://base.sfari.org
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and SPARK cohorts are available from SFARI Base (https://base.sfari.org) for approved researchers. Access to the UK Biobank Resource is available via application 

(http://www.ukbiobank.ac.uk/). Data from the Decipher Database is available from https://decipher.sanger.ac.uk/. Whole-genome sequencing data of post-mortem 

brain tissue is available from the National Institute of Mental Health Data Archive (DOI: 10.15154/1503337). Source data is provided for gels shown in 

Supplementary Figures 16c and 17a.
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size Sample size was set by the total number of samples in the Simons Simplex Collection and Simons Powering Autism Research for Knowledge 

cohort. We excluded a small number of samples which failed to pass quality control checks. While no statistical method was used to 

predetermine sample size, the sample sizes were equivalent to or larger than similar studies (see Methods for additional information). 

 

The 60 post-mortem brain samples represented the totality of post-mortem brain samples available for individuals with ASD from the Lieber 

Institute for Brain Development, the Oxford Brain Bank, and the University of Maryland Brain and Tissue Bank through the NIH Neurobiobank, 

and from Autism BrainNet. These samples were not used for statistical analysis but to find individual examples of mosaic CNVs in brain tissue.

Data exclusions Samples with evidence of contamination with other DNA were excluded from analysis because contamination can manifest as mosaic CNVs 

under the haplotype phase model. This exclusion is well-established in the literature and is described extensively in Methods.

Replication We used digital-droplet PCR to confirm the presence of two mosaic CNVs in post-mortem brain tissue discovered via the computational 

pipeline. Both events were successfully confirmed via quantitative PCR. Each ddPCR reaction was replicated at least three independent times. 

Gels shown in supplementary Fig. 16c and 17a were replicated three independent times.

Randomization Samples were allocated into groups via the Simons Foundation. We analyzed SSC and SPARK cohorts separately to control for the distinct 

experimental procedures used to produce the data. We additionally analyzed the three sub-cohorts of the SSC data separately, again to 

control for differences in experimental procedure.

Blinding Blinding was not used because the data had previously been allocated into groups by the Simons Foundation. This allocation was done prior to 

the conception of this study and the authors had no control over the allocation.
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