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Copy number variants (CNVs) have been implicated in

neuropsychiatric disorders, with rare-inherited and de novo

CNVs (dnCNVs) having large effects on disease liability. Recent

studies started exploring a class of dnCNVs that occur post-

zygotically, and are therefore present in some but not all cells of

the body. Analogous to conditional mutations in animal models,

the presence of risk mutations in a fraction of cells has the

potential to enlighten how damaging mutations affect cell-type/

cell-circuit specific pathologies leading to neuropsychiatric

manifestations. Although mosaic CNVs appear to contribute to

a modest fraction of risk (0.3�0.5%), expanding our insights

about them with more sensitive experimental and statistical

methods, has the potential to help clarify mechanisms of

neuropsychiatric disease.
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Introduction
The expansion of sequencing technologies and consortia

efforts have allowed the characterization of many loci and

genes involved with psychiatric disorders. The genetic

architecture of these disorders has implicated inherited as

well rare de novo variants, where copy number variants

(CNVs) tend to have large effect sizes [1–6]. Many of

these variants are under evolutionary constraint, such that

only viable mutations can be observed when studying

germline mutations. De novo variants can also arise post-

zygotically, resulting in a mosaic individual with a subset

of cells affected by a mutation (Figure 1). These variants
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are not under the same constraints as germline variants,

allowing us to observe mutations that would be embry-

onically lethal, and yet may illuminate new mechanistic

understanding of disease. Somatic variants provide a

unique opportunity to study natural experiments akin

to conditionally transgenic mouse models, where only a

subset of cells is affected. This review focuses on recent

discoveries of somatic CNVs (sCNVs), their contribution

to neuropsychiatric disorders, and novel insights from

somatic CNVs in non-diseased tissue that might illumi-

nate potential mechanisms originating these events and

discusses potential future paths to further advance the

field.

Somatic CNVs in normal brain
The frequency of sCNVs in the normal human brain and

pathological conditions remains largely unknown. Studies

of sCNVs in the normal human brain have provided

relative baseline rate measurements as well as suggested

potential mechanisms that might lead to neuropsychiatric

disease. One of the first studies using fluorescence in situ
hybridization (FISH) for only chromosome 21 in post-

mortem brain tissue suggested an aneuploidy rate of �4%

in neuronal as well as non-neuronal cell populations in

equal proportions [7]. This initial estimate suggested that

somatic aneuploidy might be ubiquitous in the brain, and

could potentially serve in the physiological role of gener-

ating cellular diversity. However, more recent studies

using single cell whole-genome sequencing (scWGS)

suggest that the prevalence of chromosomal aneuploidy

in the adult human brain is much lower, occurring in

perhaps 2–5% of neurons, significantly less than the 20%

previously reported using older methods [8–10]. These

findings suggest that, as in other tissues, aneuploidy is in

general deleterious and rare in the human brain.

While somatic aneuploidy appears to be rare, scWGS

studies have revealed that smaller, sub-chromosomal

sCNVs in neurons in post-mortem human brain occur

in 13–40% of cells [9,10,11��]. The reported events tend

to be large (>1 Mb) — indeed, present scWGS methods

have limited ability to accurately detect smaller sCNVs —

with deletions being more common than duplications in

neurons. In addition, McConnell et al. [10] found that

these sub-chromosomal sCNVs were not enriched in

canonical regions involved in genome stability, nor

regions enriched for germline CNVs, which suggests that

sCNVs could potentially alter novel regions of the

genome whose essential were not previously defined in

the germline state. Single neurons were also found to
Current Opinion in Genetics & Development 2021, 68:9–17
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Figure 1

Inherited, de novo, and somatic CNVs affect a different proportion of cells and tissues. (a) Inherited CNVs are present in all cells of the parent and

are transmitted to the offspring during fertilization, causing all the child’s cells to carry the variant. (b) De novo CNVs occurring in the parental

germ cells can pass the variant to the offspring during fertilization, resulting in all child’s cells carrying the variant. (c) Somatic CNVs can occur

before gastrulation and organ cell commitment resulting in these variants to be present in a fraction of cells in several tissues such as brain and

blood. (d) If somatic CNVs occur after gastrulation they can be organ specific, with variants arising during cortical neurogenesis present in the

brain – later occurring variants can be more focal.
have a higher frequency of complex karyotypes and affect

more of the genome compared to non-neuronal cells

[11��]. Cai et al. [9] also found one sCNV in 15q13.2-

13.3, a CNV that has been associated with autism and

other neuropsychiatric disorders [5,12].
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The mechanism by which sCNVs occur in the normal

human brain remains largely unknown. A mechanism of

post-zygotic CNVs that has gathered much attention in

recent years is CNV variants that occur due to chromosomal

instability in early embryogenesis, which might result in
www.sciencedirect.com
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sCNV shared clonally by many cells [13,14]. The early

zygote’s chromosomal instability has been attributed to

overexpression of cell-cycle promoting genes, and reduced

cell cycle checkpoints, along with relative lack of support

fromtissuearchitecture[14,15�].Earlier single-cellgenome

analyses of blastomeres from human cleavage-stage

embryos produced during theprocess of invitro fertilization
have shown that up to 90% of embryos acquire numerical or

structural chromosomal abnormalities, with 39% of them

being mosaic [16], while other studies have suggested

mosaicism levels as high as 73% [17]. In a recent study

Liu et al. [18�] showed that there are embryos with multiple

de novo CNVs that tend to be DNA copy number gains that

appear either as tandem duplications or as more complex

DNA rearrangements. The breakpoint junctions tend to

reveal sequence microhomology, suggesting that these

CNVs involve erroneous DNA replicative mechanisms,

and are of post-zygotic origin, but surprisingly, tended to

be present in all cells of the individuals analyzed rather than

exhibiting a mosaic pattern. However, this lack of mosai-

cismcanbeattributedtothefact thatnotallblastomeresofa

cleavage-stage embryo necessarily contribute to the fetal

cell lineage, as some of them contribute to the trophoblast/

placenta, which might have a physiological role at prevent-

ing pregnancy loss [19,20]. As further studies characterize

the mosaic pattern of these events, questions still remain

such aswhether there isanygenomiccontextenrichment of

these CNVs or whether they tend to affect specific sets of

genes that might predispose to disease later in life. The

genomic instabilityof theearlyzygotecouldpredisposeit to

obtain somatic structural variants present in a large fraction

of cells, which might impact brain function akin to neuro-

developmental disorders, though this remains an area of

uncertainty.

While the previous mechanism suggests a way that neural

cells could have gained sCNVs through mitotic cell divi-

sion during early development, a major question is

whether non-cycling neurons are subject to ongoing cre-

ation of sCNVs, since until recently it has been impossi-

ble to study the genome of a single neuron. Studies in

mice have suggested that neuronal activity can produce

double-stranded breaks in the DNA [21]. These double

stranded breaks could potentially result in mosaic CNVs

even in the absence of cell division through deletions

secondary to non-homologous end joining repair (NHEJ),

though this remains unproven. Neuronal sCNVs were

shown to occur in locations enriched in neural or synaptic

genes using neural progenitor cells [22]. Similar sCNV

susceptibility of neuronal genes have been observed in

post-mortem human brain using single-cell DNA

sequencing [11��]. Thus, resolution of these events result-

ing in sCNVs may negatively affect neuronal function in

some cases.

The dynamics of sCNVs through aging remain mostly

unknown. While neuropsychiatric disorders have
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relatively early disease onset, which might suggest a

genetic mechanism that occurs in early development,

somatic mutations could also be acquired with aging after

development. This differential rate of somatic mutation

acquisition is an attractive hypothesis for the heterogene-

ity of disease onset of neuropsychiatric disorders. Somatic

single nucleotide variants (sSNVs) have been shown to

accumulate with aging in non-diseased neurons [23]. In

contrast, in a recent study using scWGS of 474 neuronal

nuclei from 5 non-diseased individuals along with previ-

ous published data of 458 neurons from 11 additional

individuals showed a surprising inverse correlation

between the fraction of cells with CNVs and age, ranging

from �37% in individuals younger than 25 years old to

�5% for individuals older than 75 years old [11��]. In this

study the number of sCNVs per neuron had a general

trend towards more CNVs per neuron in older individu-

als, however there was large within individual variability

of the sCNV burden per neuron, suggesting this trend

should be interpreted with caution. In addition, sCNV

calling from scWGS tends to be biased towards larger

events, implying that these trends if true might be rele-

vant to larger events that have a greater chance to be

deleterious. Understanding the dynamics of sCNVs accu-

mulation on neural cells will likely require exploring a

wide range of neuronal types and conditions. Neverthe-

less, these data might suggest a deleterious role of sCNVs

on neuronal survival since older individuals who are

considered healthy tend to have a lesser fraction of

neurons with sCNVs.

Exploring the idea that age-related sCNV might contrib-

ute to disease, Lee et al. [24] performed a series of RT-

PCR and DNA in situ hybridization (DISH) experiments

on normal and Alzheimer’s disease (AD) brain. Their data

suggested that a variety of structural rearrangements at

the APP gene involved in AD were enriched in the brains

of individuals with sporadic AD and increased with aging,

suggesting that sporadic recombination events leading to

sCNVs in this locus could contribute to disease risk.

However, initial attempts to replicate these findings

found that key experiments in Lee et al. showed artifac-

tual vector contamination, making it uncertain whether

any sort of amplification or recombination at the APP
locus indeed occurs with age in vivo [25]. Consequently,

even though deleterious effect of sCNVs are an interest-

ing avenue to explain later onset neuropsychiatric phe-

notypes, the field would benefit from further characteri-

zation sCNVs of the aging dynamics of sCNVs to fully

assess their impact.

Somatic CNVs in neurodevelopmental
disorders
Somatic mutations including sCNVs have been shown to

play an important pathogenic role in several neurodeve-

lopmental disorders such as focal cortical disorders known

as focal cortical dysplasia, hemimegaloencephaly (HMG),
Current Opinion in Genetics & Development 2021, 68:9–17
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and polymicrogyria [9,26–28]. These CNVs can result in

lesions observable with clinical imaging such as MRI as in

the case of HMG, which is characterized as a brain

overgrowth syndrome. Mosaic 1q gains has been shown

to play a causative role in this disorder using SNP arrays

[26] and more recently scWGS [9], which is consistent

with results implicating gain of function mutations in the

AKT3 gene which lies within the 1q region that is

involved [26,27,29,30]. In the scWGS study it was shown

that the chr1 gain was actually tetrasomy, not trisomy,

which could reflect a mosaic isodicentric 1q-1q event, as

previously described in pediatric nasopharyngeal cancer

[31]. The gain of 1q was present in neuronal and non-

neuronal cells, suggesting that it arose early in develop-

ment, yet these sCNVs are generally limited to brain and

produced a brain specific phenotype.

Large-scale studies using peripheral tissue SNP arrays

have also been carried out to assess the burden of sCNVs

in developmental disorders (DD). A study of sCNVs

using �7000 SNP arrays in an ascertained cohort of

subjects with developmental disorders estimated an

event frequency of �0.9% of cases tested, which repre-

sented a 40-fold enrichment in cases compared to control

[32��]. In this study they focused on events that were

present in at least 10% of cells, and larger than 2Mb. They

found sCNVs that were consistent with the phenotypes of

each child, using the assumption that they expected the

phenotype of the events to match that of the germline

state albeit less extensive. These results suggest the

potential of early developmental sCNVs to alter brain

function and behavioral phenotypes.

Somatic CNVs in neuropsychiatric disorders
Some neuropsychiatric disorders such as autism spectrum

disorder (ASD) tend to have an early onset of disease,

suggesting that somatic mutations acquired during devel-

opment might contribute to disease liability. Studies of

sSNVs have implicated somatic variation in the genomic

landscape of ASD [33��,34–38]. A recent study of somatic

mosaicism in ASD used a novel sCNV calling algorithm

that leverages haplotype-phasing information from SNP

array data to detect mosaic events present in as low as 1%

of cells [33��,39�]. This algorithm was applied to the blood

derived SNP array data from the Simon Simplex Cohort

and the SPARK datasets, totaling 12 077 probands and

5500 siblings. In this study, the percent of probands

carrying a sCNV event was 0.4% compared to the 0.2%

of siblings. A statistically significant enrichment was of

observed in events >4Mb in ASD. Larger sCNVs were

positively correlated with ASD clinical severity as mea-

sured by SCQ summary score. Surprisingly, previously

implicated CNVs loci such as 16p11.2 had no detectable

phenotypic effects in the mosaic state, and were if any-

thing more common in normal individuals than ASD

probands. This result led the authors to conclude that

mosaic and germline CNVs could result in autism through
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different mechanisms, requiring some events to be pres-

ent in all cells to create a phenotype. In the mosaic state,

the events might be embedded in larger CNVs that could

be more toxic, thus restricted to a fraction of cells. In

WGS of 59 post-mortem brain samples from ASD, one

case showed 10.3 Mb complex CNV gain of 2pcen-2q11.2

present in 26% of cells, considered likely to be contribu-

tory, since it involved a region where germline CNV gain

is associated with severe developmental disability, and

since the CNV included two genes associated with ASD

(MAL and NPAS2) [33��]. This case was used to show

that the sCNV was present in both neuronal and non-

neuronal cells in brain, suggesting that better methods

might allow deeper analysis of the distribution of somatic

events in postmortem brain. Together these data suggest

a modest but consistent contribution of sCNVs to ASD

and neurodevelopmental disorders. The likely contribu-

tion of sCNV to ASD (0.4%) appears to somewhat smaller

than the contribution to more severe DDs (0.9%), though

this difference might still represent technical or ascer-

tainment differences.

The great overlap in the genetic architecture of neu-

rodevelopmental disorders such as ASD and other neu-

ropsychiatric disorders suggests that sCNVs could simi-

larly contribute to their genomic landscape [40–42].

Whereas the familiar role of de novo germline CNV

in SCZ (see other articles in this issue) has been best

demonstrated by large-scale studies, similarly large

studies on sCNV have not yet been carried out. One

of the first reports attempting to implicate sCNVs in a

neuropsychiatric disorder used multicolor FISH on

post-mortem brain samples of six subjects with SCZ.

They observed aneuploidy in up to 0.5%–4% of neurons

involving chromosomes X and 18 in two subjects with

SCZ [43]. More recent studies combining multicolor

FISH and quantitative FISH estimated an aneuploidy

rate of 0.31�0.46% in controls and 1.09–2.73% in SCZ

in autosomes 1,9,15,16, and 18 [44–46]. These aneu-

ploidy estimates obtained through FISH need further

replication due to the small sample sizes analyzed.

Methods that incorporate next generation sequencing

data at the single cell level to detect aneuploidies could

potentially provide more accurate estimates due to the

analysis of larger sample sizes, and genome-wide

measurements.

Smaller intra-chromosomal sCNVs have been observed

using deep WGS data on SCZ post-mortem brain samples

[47]. In one study, Kim et al. used an integrated somatic

deletion calling pipeline to identify brain specific sCNVs

in three SCZ cases. They reported deletions in the genes

CBX3, PRKRA, MRPL4, SUCLG2 and TDG in SCZ,

ranging from 466bp to 5.6Kb [47]. Deletions of PRKRA
and MIR548N were observed in two independent cases,

which they interpreted as evidence that these genes

might be in region susceptible to structural variation. It
www.sciencedirect.com
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will be interesting to see the potential relevance of these

intriguing results to disease biology as larger sample sizes

are analyzed.

Twin studies have also been used to study sCNVs in

schizophrenia [48,49]. In a recent study by Castellani et al.
[49], they used next-generation sequencing from blood

and cheek swab samples of two pairs of monozygotic

twins discordant for schizophrenia (MZD) and their fam-

ilies to characterize post-zygotic somatic variation. They

found multiple sequence differences between the twins

from SNVs to CNVs and structural variants. Events

involving glutamate receptor signaling and dopamine

feedback in cAMP signaling pathways were enriched in

the affected twin in both families using an ingenuity

pathway analysis, which aligns with previously studies

suggesting the importance of synaptic machinery and the

glutamate pathway in this disease [1,2,50]. The authors

suggest that these post-zygotic differences in MZD twins

might increase the liability to SCZ for a given genomic

background, which could account for MZ twin discor-

dance for these disorders [49]. However, some studies

have not been able to replicate such discordance in

schizophrenia [51,52], but did find discordance of somatic

mutations between MZD for gender dysphoria [51].

These discrepancies might be due to limitations in vali-

dating low-frequency allele mutations with Sanger

sequencing [51], but of greater concern is the small

sample sizes of these studies (2 pairs of monozygotic

twins), which preclude strong conclusions about the role

of sCNVs in disease liability. Finally, it is worth men-

tioning that care must be taken when performing gene set

enrichment analyses in CNVs, especially in neurological

and neuropsychiatric studies, since spurious enrichments

of neuronal related genes might be found based on the

background distribution of these genes across the genome

[53]. Thus, standard enrichment methods might provide

false positive associations if covariates such as event

length, number of genes overlapped, and length of the

genes are not accounted for.

While evidence of a role of sCNVs in the genetic archi-

tecture of neuropsychiatric disorders also comes from

large scale blood derived studies, these studies must be

performed cautiously due to the recently recognized

tendency for blood cells themselves to undergo unequal

clonal expansion with age. Causative somatic mutations

have been identified in peripheral tissue samples from

patients with brain malformations or Rett syndrome at

allele fractions of 1–43%, which translates to presence in

2–86% of cells[30,54]. These allele fraction suggest that

these mutations occurred early in development. Thus,

analysis of peripheral tissues can provide a unique oppor-

tunity to analyze large sample sizes when the relevant

brain tissue is not available and can provide insight into

those mutations that occurred in the early stages of

development. However, care must be taken to exclude
www.sciencedirect.com 
sCNVs in peripheral blood cells that arose secondary to

clonal hematopoiesis (CHIP), which tend to be observed

in individuals older than 40 years-old [39�,55], and are

uncommon in younger individuals [32��,33��]. In a study

aiming to characterize the burden of sSNVs in individuals

with SCZ and controls from blood derived WES, the

investigators were not able to find any enrichments in

cases vs controls due to the large effect of clonal sSNV

accumulation with age as a result of CHIP events [55].

This study provides a cautionary tale on the limitations of

estimating somatic mutational burden in neuropsychiatric

disorders from blood samples. As CHIP derived sCNVs

are characterized further [39�,56,57], it may be possible to

develop filtering criteria that produce mosaicism distribu-

tions that are statistically different from those expected

from a CHIP event. A study from the International

Schizophrenia Consortium used blood derived SNP-array

data from 3518 SCZ cases and 4238 controls. Ruderfer

et al. [58] estimated the rate of sCNVs to be nominally

increased in cases (0.42% versus 0.26% in controls),

though the sample size prevented this from reaching

statistical significance. Their CNV events ranged from

10Mb to complete chromosomal copy number changes,

they thus concluded that these events were somatic since

such large alterations are unlikely to be viable with life.

However, upon quantitative PCR and nanostring valida-

tion of these events, they found that they were present in

all the lymphocytes, which might indicate that their

method was not able to detect lower mosaic variants,

and that these events might have resulted from clonal

hematopoietic expansion. Further studies using more

sensitive sCNV detection pipelines, larger sample sizes,

and more stringent filtering criteria to dissect early devel-

opmental sCNVs from CHIP events should eventually

allow more accurate estimates of the role of sCNVs in

SCZ.

Conclusions and future directions
While initial estimates of the burden of sCNVs in neuro-

psychiatric disorders are starting to emerge, there remains

many unanswered questions about the role of these

mutations in disease liability (Figure 2). Most published

studies to-date have focused on sCNVs in ASD and

Schizophrenia, while other disorders such as Bipolar,

Attention Deficit Hyperactivity Disorders (ADHD),

and Tourette’s syndrome remain largely unexplored.

The largest studies estimating the burden of sCNVs in

neuropsychiatric disorders come from SNP array data, and

they suggest that these events are likely to contribute to a

consistent, albeit modest, proportion of cases <0.5%

[33��,58]. However, these are likely to be underestimates

since they are based on blood samples, restricting their

sensitivity to very early developmental disorders, as these

studies require filtering of low mosaic fraction events that

might be blood specific. To reduce CHIP contamination

these analyses have also filtered out regions of the

genome that are involved in immune function such as
Current Opinion in Genetics & Development 2021, 68:9–17
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Figure 2

Approaches to study somatic CNVs in neuropsychiatric disorders. The most used tissues for the study of somatic CNVs are blood and post-

mortem brain tissue. These approaches have technical considerations to have favored/limited their use to answer specific question. Most of the

current somatic CNV burden estimates for neuropsychiatric disorders come from blood studies, however these are likely to be underestimates as

there are limited to early events. While the study of post-mortem brain tissue has provided insights into somatic CNV rates in the non-diseased

brain, the small sample sizes of neuropsychiatric studies limits the generalizability of their findings in a neuropsychiatric disease context.
the MHC complex since those events are difficult to

differentiate from clonal hematopoietic events. However,

these loci might contain important regions involved in

neuropsychiatric disorders such as the C4 locus which has

been strongly implicated in SCZ [59,60]. Sequencing

studies of brain tissue might provide further resolution

of the effects of sCNVs later in development in neuro-

psychiatric disorders.

One of the unique aspects of studying mosaic mutations is

that they provide natural experiments equivalent to con-

ditional knockout models that we see in the animal model

literature. In the case of somatic mutations in HMG and

FCDs we see some evidence of specificity to excitatory

neuronal cells, resulting in an epileptic phenotype and

localizable radiological findings [29,61–63] at mosaic frac-

tions as small as 1%. Performing analyses of large cohorts

of postmortem brain samples would in principle allow the

dissection of cell types that might be differentially

affected by sCNVs, and measurement of the mosaic

fraction that would produce a neuropsychiatric pheno-

type. Single-cell WGS of healthy human neurons esti-

mate that sub-chromosomal sCNVs are present in 13–

40% of neurons, which tend to decrease with age

[10,11��], suggesting a deleterious effect on neuronal
Current Opinion in Genetics & Development 2021, 68:9–17 
survival of these events. However, it is still unknown

what these rates would be for non-neuronal brain cell

populations such as glial and microglial cells. Expanding

the study of sCNV from scWGS to other brain cell types

offers the opportunity to further understand how early

developmental sCNVs might impact normal lineage

development, which might have a role in neural circuit

architecture. Current efforts by consortia such as the

Brain Somatic Mosaicism Network (BSMN) [64] aim to

generate next-generation sequencing data of various neu-

ropsychiatric disorders to explore some of these

questions.
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