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A recurrent, homozygous EMC10 frameshift variant is
associated with a syndrome of developmental delay with
variable seizures and dysmorphic features
Diane D. Shao 1,2, Rachel Straussberg3,4,24, Hind Ahmed5,24, Amjad Khan5, Songhai Tian6, R. Sean Hill2,7, Richard S. Smith2,
Amar J. Majmundar8, Najim Ameziane9, Jennifer E. Neil2,7, Edward Yang10, Amal Al Tenaiji11, Saumya S. Jamuar12,13,
Thorsten M. Schlaeger14, Muna Al-Saffar2,15, Iris Hovel9, Aisha Al-Shamsi16, Lina Basel-Salmon4,17, Achiya Z. Amir4,18, Lariza M. Rento2,7,
Jiin Ying Lim12,13, Indra Ganesan12, Shirlee Shril8, Gilad Evrony2,19, A. James Barkovich20, Peter Bauer9, Friedhelm Hildebrandt8,
Min Dong6, Guntram Borck21,23, Christian Beetz9,25, Lihadh Al-Gazali22,25, Wafaa Eyaid5,25 and Christopher A. Walsh2,7,25✉

PURPOSE: The endoplasmic reticulum membrane complex (EMC) is a highly conserved, multifunctional 10-protein complex related
to membrane protein biology. In seven families, we identified 13 individuals with highly overlapping phenotypes who harbor a
single identical homozygous frameshift variant in EMC10.
METHODS: Using exome, genome, and Sanger sequencing, a recurrent frameshift EMC10 variant was identified in affected
individuals in an international cohort of consanguineous families. Multiple families were independently identified and connected
via Matchmaker Exchange and internal databases. We assessed the effect of the frameshift variant on EMC10 RNA and protein
expression and evaluated EMC10 expression in normal human brain tissue using immunohistochemistry.
RESULTS: A homozygous variant EMC10 c.287delG (Refseq NM_206538.3, p.Gly96Alafs*9) segregated with affected individuals in
each family, who exhibited a phenotypic spectrum of intellectual disability (ID) and global developmental delay (GDD), variable
seizures and variable dysmorphic features (elongated face, curly hair, cubitus valgus, and arachnodactyly). The variant arose on two
founder haplotypes and results in significantly reduced EMC10 RNA expression and an unstable truncated EMC10 protein.
CONCLUSION: We propose that a homozygous loss-of-function variant in EMC10 causes a novel syndromic neurodevelopmental
phenotype. Remarkably, the recurrent variant is likely the result of a hypermutable site and arose on distinct founder haplotypes.
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INTRODUCTION
The endoplasmic reticulum membrane complex (EMC) consists of
multiple proteins that are highly conserved across eukaryotes.1

This complex has been shown to play a critical role as a
transmembrane protein insertase, facilitating the proper insertion
of some tail-anchored membrane proteins and multipass trans-
membrane proteins.2,3 Of the ten proteins that form the human
EMC, only variants in EMC1 have previously been associated with a
genetic syndrome that includes global developmental delay
(GDD), cerebellar atrophy, seizures, microcephaly, and vision
abnormalities4,5 (OMIM 616875).
In this study, we report 13 individuals from seven consangui-

neous nuclear families who are affected with a syndromic

phenotype including GDD, intellectual disability (ID), variable
seizures, and variable dysmorphic features including a long face,
curly hair, cubitus valgus, and arachnodactyly. This phenotype
segregated with a homozygous EMC10 frameshift variant that
appears to be a mutational hotspot. Using in vitro studies, we
provide additional evidence for the deleterious effect of this
EMC10 variant.

MATERIALS AND METHODS
Clinical presentation was assessed by a clinical geneticist from one
of the participating clinical centers, and informed consent for
publication of individual photos was also obtained. Exome,
genome sequencing, and/or single-nucleotide polymorphism
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(SNP) array, were performed either through clinical diagnostic
testing at Centogene and/or through research settings. See
Supplemental Material for institution-specific gene discovery
methods. Collaborators were connected via Matchmaker
Exchange6 and existing scientific networks. Genome-wide linkage
analysis was performed to generate a logarithm of the odds (LOD)
score from SNP array data using Merlin under a recessive mode of
inheritance assuming a disease allele prevalence of 0.0001 and full
penetrance. Haplotype analysis from exome and genome
sequencing data considered only variants in regions that are
covered by both genome and exome sequencing. A 2-Mb region
up and downstream of the relevant EMC10 variant was
interrogated (chr19: 48981900–52961200 [hg19]) and filtered for
high quality homozygous variants.
Further details of genetic and experimental methods can be

found in Supplemental Material.

RESULTS
Genetic findings
Using exome or genome sequencing, we identified a biallelic
EMC10 frameshift variant at RefSeq NM_206538.3: c.287delG (p.
Gly96Alafs*9), in all affected individuals with shared phenotype in
seven consanguineous families of Bedouin, Saudi Arabia, and
United Arab Emirates origin (Fig. 1a). None of the individuals had
other rare variants predicted to alter gene function in any
previously reported genes associated with neurodevelopmental
conditions. There are no individuals who are homozygous for the
EMC10 c.287delG variant in human reference databases such as
gnomAD,7 GenomeAsia 100K Project,8 and the Greater Middle East
Variome.9 No individuals with biallelic loss-of-function variants in

EMC10 were identified by comprehensively searching Centogene’s
disease-associated variant database CentoMD,10 which contains
data from >80,000 individuals with hereditary disorders analyzed
by exome or genome sequencing. Sanger sequencing confirmed
segregation of the EMC10 variant with disease in all families,
including the extended family tree of affected individuals in
families 1 and 2 (Fig. S1).
Genome-wide linkage analysis to the phenotype of intellectual

disability determined a maximum LOD score of 6.49 on
chromosome 19, consistent with the location of EMC10 (Fig. 1b).
There were no other genomic regions that exhibited significant
linkage. Linkage analysis using only array data for affected
individuals (thus removing the assumption that siblings, who
were not directly assessed, are truly unaffected) showed linkage to
the same region. Regions of homozygosity (ROH) were also
reviewed from SNP array, exome, or genome sequencing data,
and ranged from 1.1 Mb to 2.8 Mb. The consensus ROH was ~225
kB in size (hg19 chr19: 50789967–51015404), in which the only
shared coding variant was in EMC10 (Fig. 1c).
Because the variant was identical in multiple unrelated families,

we looked specifically at whether there was a founder effect (i.e., a
single shared haplotype) or a potential hotspot for genetic
variation (i.e., a variant that arose in multiple haplotypes).
Haplotype analysis clearly showed two distinct haplotypes based
on SNPs from exome sequencing (Fig. 1d). SNP array data also
supported the presence of two distinct haplotypes, and included
family 6 for whom exome data was unavailable (Fig. S2).
Haplotypes were shared by affected individuals of families 1 and
2 who are second cousins, and a separate haplotype was
identified in families 3 through 7.
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Fig. 1 EMC10 variant segregates with disease phenotype in multiple affected families. (a) Pedigrees of affected families. Affected
individuals in families 1 and 2 are second cousins. Affected individuals in families 5 and 6 are first cousins. Solid black, affected. Genotypes,
where indicated, represent results of evaluation for the EMC10 c.287delG variant by Sanger sequencing. (b) Genome-wide logarithm of the
odds (LOD) score distribution. (c) Affected individuals share a region of homozygosity on chromosome 19 (boxed), overlapping the location of
EMC10 variant. Single-nucleotide polymorphism (SNP) array data for affected individuals in families 1, 2, 3, and 6 are shown. Homozygous SNPs
are displayed in red or blue. Heterozygous SNPs are displayed in green. (d) Haplotypes based on SNPs determined from sequencing data in
the consensus region of homozygosity (chr19: 50789967–51015404) indicate that EMC10 variant arose on two distinct haplotypes. SNP array
independently confirmed two haplotypes (Fig. S2).
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Clinical characteristics
Clinical findings for all 13 affected individuals show a core
phenotype of GDD/ID and, to a lesser extent, dysmorphic features
and seizures (Table S1). Facial dysmorphisms described in multiple
individuals include a long face, pointed chin, and curly hair,
although evaluation by several dysmorphologists did not concur
on a consistent facial gestalt (Fig. 2a). Limb anomalies included
cubitus valgus (6/13), arachnodactyly (3/13), and bilateral 5th digit
clinodactyly (1/13). Most individuals exhibited GDD in domains
including social, motor, language, and cognitive, and/or ID (11/12).
Individual II-1 in family 7 was age 3 months at ascertainment; thus

most milestones could not be assessed. Seizures were noted in 6/
13 individuals, typically during childhood or in the neonatal
period, and included multifocal as well as generalized tonic–clonic
seizures. The majority of affected individuals who underwent brain
magnetic resonance imaging (MRI) had abnormal findings (9/10);
however, findings were individually nonspecific, including cere-
bellar tonsillar ectopia or Chiari I (4/12), a thin corpus callosum (3/
10), and white matter signal abnormalities (3/10) (Fig. 2b; Table S2).
Neurologic symptoms appeared to be static or nonprogressive.
Additional minor features included failure to thrive (4/13),

umbilical and inguinal hernias (5/13), and ventricular septal
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Fig. 2 Clinical features of affected individuals. (a) Facial appearance of affected individuals. (b) Representative brain abnormalities on
magnetic resonance image (MRI). See Table S2 for summary of imaging findings. (c) EMC10 RNA expression relative to ACTB in blood from
affected individual and unaffected parent. Single-sided t-test *p < 0.01, **p < 0.005. (d) EMC10 RNA expression relative to ACTB in induced
pluripotent stem cells (iPSC)-derived neurons from individual heterozygous for EMC10 variant, and related individual without the variant. Both
individuals are relatives of family 2 (pedigree in Fig. S1). Single-sided t-test **p < 0.005. (e) Sanger sequencing traces from DNA and RNA
(complementary DNA [cDNA]) from an individual heterozygous for the reported EMC10 variant. The DNA sequencing trace is displayed as
reverse complement. (f) Proteasome inhibition by MG-132 rescues expression of V5-tagged truncated EMC10287delG in a time-dependent
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defects (2/13). Renal abnormalities of any kind were present in 9/
13 affected individuals (69%) (Fig. S3; Table S3). There is no
correspondence of renal phenotype to the two haplotypes at the
EMC10 locus. Renal abnormalities included nephrocalcinosis (4/
11), mild hydronephrosis or hydroureter (2/11), and renal cysts (3/
11; unilateral cyst in 2 individuals, bilateral cysts in 1 individual).
One individual had end-stage renal disease of unclear etiology,
which required kidney transplantation. The variability in renal
phenotype was suggestive of different underlying genetic
mechanisms, and less likely to be attributed specifically to the
EMC10 variant. Multiple liver cystic lesions were incidentally
identified individual II-6 from family 6 (Fig. S4).

EMC10 functional assessment of variant and expression in human
brain tissue
The EMC10 c.287delG frameshift variant is expected to result in
nonsense-mediated messenger RNA (mRNA) decay. EMC10 expres-
sion is significantly reduced, but not absent, in affected individuals
as determined by evaluation of RNA expression from blood by
droplet digital polymerase chain reaction (PCR) in family 6: II-5 and
his unaffected mother I-2, who is heterozygous for the EMC10
variant (Fig. 2c). For each sample described, a negative control
reaction performed without reverse transcriptase confirmed that
there was no DNA contamination in the extracted RNA.
Furthermore, in neurons derived from induced pluripotent stem
cells from relatives of families 1 and 2 (individuals 2406 and 2407
indicated in Fig. S1; Fig. 2d), EMC10 expression is reduced in
heterozygotes compared with individuals without the variant.
Finally, we amplified EMC10 complementary DNA (cDNA) in family
6: I-2 (EMC10+ /-) using PCR, and showed that Sanger sequencing
traces confirmed allelic imbalance, with decreased abundance of
RNA transcripts that harbor the single-nucleotide deletion (Fig. 2e).
Although a small fraction of RNA that includes the EMC10

frameshift variant is expressed, we show that this transcript results
in an unstable protein. The potential truncated protein is 103
amino acids in length. The last 8 amino acids are altered due to
frameshift and disrupts a region of high amino acid conservation
(Figs. S5, S6). A signal peptide (amino acids 1–27) is cleaved in the
mature form of EMC10 (UniprotKB accession U5QCC4). The C-
terminal region, which interacts with core EMC proteins,11,12

would be abolished by the truncation. We cloned the open
reading frame of EMC10, from residue 1 to the terminal residue of
p.Gly96Argfs*9, into an expression vector (EMC10287delG). We also
created another EMC10 truncation mutant that stops at residue
103 (EMC101–103), which retains the wild-type amino acids but
mimics the length of the truncation variant. Finally, we created a
truncated 221 residue construct that included the entire lumenal
domain (EMC101–221), as control for expression of our allele. All
constructs were tagged with a V5 epitope for detection and
expressed in HeLa cells via transient transfection (Fig. S7).
EMC101–221 was detected in cells; in contrast, neither EMC10287delG
nor EMC101–103 was detectable in cell lysates, suggesting that
these two shorter truncated fragments are unstable. We showed
that this instability is due to proteasomal degradation. Cells
transfected with the EMC10287delG or EMC101–221 construct were
treated with proteasomal inhibitor MG-132, which rescued protein
expression in a time-dependent manner (Fig. 2f).
We assessed expression of endogenous EMC10 in postmortem

infant human brain using immunohistochemistry (Fig. 2g). Speci-
ficity of the EMC10 antibody was confirmed by immunoblotting
for EMC10 after transfection of commercially validated small
interfering RNA (siRNA) (Fig. S8). Staining for EMC10 in post-
mortem human infant brain showed colocalization with MAP2, a
non-nuclear protein expressed in mature neurons. NeuN, a nuclear
marker of mature neurons, also showed colocalization
with EMC10.

DISCUSSION
We describe a syndromic phenotype including GDD/ID, seizures,
and variable dysmorphic features and limb abnormalities,
associated with autosomal recessive inheritance of a recurrent,
loss-of-function frameshift variant in EMC10. Our cohort exhibits
multiple renal abnormalities, which are difficult to reconcile with a
single underlying genetic mechanism; thus, we cannot confidently
ascribe a renal phenotype to the reported variant. Intriguingly, all
the families identified shared the exact same EMC10 variant, and
we showed that the variant arose independently in two founder
haplotypes. The single-nucleotide deletion occurs in a homo-
polymeric repeat sequence (CGGGGC) that predisposes to DNA
replication errors and represents a potential hotspot for genetic
variation. In addition, deletion of any one of the four consecutive
G residues would create an indistinguishable frameshift allele.
Recurrent variants at sites of homopolymeric G/C nucleotides have
been identified in several disorders with monoallelic13,14 or
biallelic15 inheritance.
Comparison of the EMC10 phenotype to the published EMC1

phenotype4 shows common features of GDD, present in all
families for both diseases (Table S4). Individuals with EMC10
variants had higher rates of seizures compared to EMC1, and
individuals with EMC1 variants had cerebellar or cerebral atrophy
that was not seen in the EMC10 cohort. Abnormalities of the
corpus callosum were observed in both cohorts.
Homozygous EMC10 knockout mice were characterized by the

International Mouse Genotyping Consortium16 (www.
mousephenotype.org) and exhibited statistically significant
changes on behavioral assessments compared with control mice.
Differences include abnormal vocalization, gait, activity, and
behavior during open field testing, which measures motor activity
and anxiety-related behaviors in rodents (Fig. S9). Another EMC10
knockout model identified differences in cognitive processes such
as working memory and associative emotional learning.17 Other
published murine knockout models did not specifically assess
neurobehavioral phenotypes.18,19 Further studies are required to
understand whether the observed abnormalities in murine models
directly reflect the neurocognitive profiles of humans with EMC10
variants.
Transmembrane proteins have a spontaneous rate of protein

membrane insertion, and this rate is enhanced by a functioning
EMC.2 Changes in EMC function are likely to decrease, but not
abolish, the insertion and proper function of multiple transmem-
brane proteins. Indeed, a survey of 61 proteins dependent upon
the EMC in proteomic studies (Tian et al.20 and Shurtleff et al.21)
revealed that many have been independently implicated in
human neurodevelopmental diseases (Table S5). EMC10 is
ubiquitously expressed in the body including in the brain, kidney,
gastrointestinal tract, and musculoskeletal tissue;22 thus it is not
surprising that the disease phenotype also involves multiple
organs.
In summary, we implicate EMC10 as a gene whose disruption

leads to a human neurodevelopmental syndrome. The systemic
nature of the phenotype highlights the pleiotropic roles of the
EMC. Open questions remain in terms of the variability of the
phenotype despite a single recurrent variant and the functional
role of EMC10 in different organ systems.
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