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Summary 

Cell lineage analysis in the cortex has revealed two 
clonal patterns, clustered and widespread clones. To 
determine the relationship of these patterns, progeni- 
tor cells were infected with a retroviral library encoding 
alkaline phosphatase, and cortical sibling cells were 
identified using PCR. Clones labeled at E15 consisted 
of single cells or small cell clusters (52%) or of wide- 
spread cells (48%). However, widespread clones con- 
sisted of multiple neuronal or glial cell types, spaced 
systematically at 2-3 mm intervals. The data suggest 
that migratory multipotentlal progenitors divide asym- 
metrically at intervals defined by cell cycle length, pro- 
ducing single cells or clusters of cells in different corti- 
cal regions. Transition from multipotentlality to more 
restricted potential may correspond to changes in mi- 
gratory behavior. 

Introduction 

The mammalian cerebral cortex is composed of diverse 
and highly differentiated neuronal and glial cell types. The 
cortex is parceled into functionally specialized regions with 
distinct cellular architectures, but across conical regions, 
there is conservation of intrinsic and extrinsic circuitry and 
cellular morphologies (Beaulieu and Colonnier, 1989). 
Conical neurons arise from progenitor cells that line the 
lateral ventricle in the ventricular and subventricular 
zones. The manner, however, in which germinal zone pro- 
genitors divide to produce multiple conical cell types re- 
mains largely unclear. 

Transplantation studies have suggested that some as- 
pects of cortical neuronal identity, such as laminar fate, 
become fixed during the mitotic phase of the progenitor's 
cell cycle (McConnell and Kaznowski, 1991). Likewise, 
other transplantion experiments addressing the neuronal 
expression of region-specific molecular markers have sug- 
gested that there is a plastic period very early in conical 
neurogenesis in which progenitor cells remain responsive 
to environmental signals prior to generating postmitotic 
daughter cells (Barbe and Levitt, 1991; Ferri and Levitt, 
1995). In contrast, progenitor cells from a slightly more 
mature cortex appear to be less responsive to their host 

environment (Barbe and Levitt, 1991; Cohen-Tannoudji et 
al., 1995). The mechanisms of these commitment steps 
remain unclear, largely because transplantation experi- 
ments have advanced ahead of fundamental information 
about normal progenitor cell behavior. 

Experiments tracing cortical cell lineage have relied 
heavily on replication-defective retroviral vectors that en- 
code histochemical marker genes; these vectors mark 
daughter cells in clonal fashion. To date, retroviral lineage 
experiments have provided evidence for progenitors that 
produce similar neuronal types, defined morphologically 
or neurochemically (Parnavelas et al., 1991 ; Grove et al., 
1993; Luskin et al., 1993; Mione et al., 1994), or uniform 
glial types (Luskin et al., 1988, 1993; Goldman and 
Vaysse, 1991; Grove et al., 1993) over multiple cell divi- 
sions. In addition, in vitro (Temple, 1989; Reynolds and 
Weiss, 1992; Davis and Temple, 1994) and retroviral (Price 
and Thurlow, 1988; Walsh and Cepko, 1988, 1992) data 
suggest that a small but significant proportion of conical 
progenitors are multipotential and produce diverse cell 
types. Multipotential progenitors have been observed in 
other regions of the developing vertebrate nervous system 
(Holt et al., 1988; Turner et al., 1990; Gray and Sanes, 
1991). 

The interpretation of retroviral lineage studies in the ce- 
rebral cortex is hampered by the fact that conical sibling 
cells can migrate in many directions (Walsh and Cepko, 
1988). A more recent approach to lineage analysis utilizes 
libraries of retroviral vectors carrying distinguishable DNA 
tags that indicate clonal relationships directly. Previous 
results with the retroviral library technique indicated that 
the progeny of some conical progenitors disperse over 
large distances, in some cases approaching the entire 
length of the cerebral cortex (Walsh and Cepko, 1992, 
1993). One mechanism producing widespread clonal dis- 
persion in the cortex appears to be the migration of progen- 
itor cells within the proliferative zones at rates of 5-20 p.m/ 
hr, averaging - 100 I~m over 8 hr (Fishell et al., 1993). A 
second mechanism of clonal dispersion may be the sub- 
stantial nonradial migration of a minority ( -  12%) of post- 
mitotic neurons (O'Rourke et al., 1992). 

The widespread dispersion of neuronal clones and the 
surprising migratory behavior of progenitor cells raise the 
question of how the widespread dispersion of many corti- 
cal clones can be reconciled with the apparent clustering 
of retrovirally labeled cells with similar phenotype. A new 
retroviral library that encodes alkaline phosphatase (AP) 
as a histochemical marker provides intense staining of 
cellular processes and direct determination of cell identity 
(Fields-Berry et al., 1992). Data obtained using this new 
retroviral library suggest that widespread clones consist 
of multiple, distinct clusters of cells, with each cluster =sub- 
unit" essentially indistinguishable from the clusters de- 
scribed previously. The presence, however, of multiple 
subunit clusters within widespread clones suggests a hier- 
archical model of conical neuron formation. 
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Results 

Neuronal Progenitors Infected by AP-Encoding 
Retroviruses Appear to Show Normal Behavior 
Cortical progenitors were infected by injection of the AP- 
encoding retroviral library into the lateral ventricles of 
fetal rats at embryonic day 14 (E14), E15, or E17. When 
injected animals were analyzed at postnatal day 15 (P15), 
retrovirally encoded AP was seen to produce intense label- 
ing of cellular processes, allowing morphological identifi- 
cation of >90% of labeled cells as neuronal or glial by 
standard morphological criteria. Neurons usually occurred 
as single cells or small clusters (<6 cells) and were identifi- 
able by their large (>10 p.m diameter) cell somata and 
by the presence of radiating dendrites often outfitted with 
spines (Figure 1). Astrocytes occurred as densely packed 
clusters of tiny cells with overlapping processes that were 
often so intensely stained in the AP reaction that precise 
determination of glial type and cell number was sometimes 
impossible. Since most oligodendrocytes are formed after 
P15, they were labeled relatively infrequently. 

Unlike retrovirally encoded I~-galactosidase (Grove et 
al., 1993), retrovirally encoded AP frequently produced a 
Golgi-like filling of neuronal processes, including in some 
cases axons. The morphologies of retrovirally labeled neu- 
rons were similar to those seen in postmortem stains of 

fixed tissue (Werner et al., 1985) (Figures la - ld ) ,  sug- 
gesting that retrovirally encoded AP did not change the 
morphology of labeled cortical neurons. Pyramidal neu- 
rons could be identified by their pyramidal cell bodies, 
prominent apical and basal dendrites (Feldman, 1984), 
and frequent spines (Figure 1 b). Several types of nonpyra- 
midal cells were seen (Fairen et al., 1984). Bipolar cells 
showed single dendrites emerging from each end of the 
cell body, forming a vertically oriented, narrow dendritic 
field (Fairen et al., 1984). Bitufted neurons had vertically 
oriented arrays of axonal branches and broader dendritic 
fields. Multipolar neurons showed large, multipolar den- 
dritic fields (Figure lc). Chandelier cells showed multipolar 
dendritic fields and distinctive axonal plexuses in which 
the axons ended in vertical strings of boutons. Neuroglio- 
form cells showed small, multipolar dendritic fields with 
short, smooth, finely beaded dendrites and axonal arbori- 
zations that appeared to terminate locally (Fairen et al., 
1984). While an unambiguous classification of all cortical 
neuronal types cannot be made on the basis of morpholog- 
ical criteria alone (Peters and Jones, 1984), we found that 
AP staining allowed identification of morphological sub- 
type in -800/0 of labeled neurons. 

A more stringent assay of the behavior of retrovirally 
labeled progenitors came from quantitative analysis of la- 
beled neurons in each cortical layer. Since retroviruses 

Figure 1. Retrovirally Encoded AP Stains Normal Neuronal Morphology 
The photographs show 4 neurons after retroviral injections at E14-E17, with corresponding camera lucida drawings of Golgi-labeled neurons with 
very similar morphology (Werner et al., 1985). Many different neuronal morphologies can be seen, including a bipolar cell (a), pyramidal cell (b), 
multipolar cell (c), and basket cell (d). Note that the AP reaction product appears to fill most dendritic processes, as well as the initial axon segment 
in some cases. The dense filling of neuronal processes allows the additional observation that AP-labeled cells show morphologies indistinguishable 
from that of unlabeled cells, demonstrating that the AP reaction product does not detectably alter neuronal development. Drawings are used with 
permission (Werner et al., 1985). Bar, 100 I~m. 
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integrate into the host genome, they label both the older 
and newer progeny of infected mitotic cells. The "inside- 
out" generation of the cerebral cortex was reflected in the 
changing patterns of labeling after retroviral injections at 
different ages. Injections at E 17 labeled a larger proportion 
of newer neurons (layer II), whereas neurons in deeper 
layers, known to be largely postmitotic by E17 (Bayer and 
Altman, 1991), were rarely labeled. In contrast, early injec- 
tions (E14) labeled neurons in cortical layers IV, V, and 
VI in much larger proportions (Figure 2). Following E14 
injections, 86% of identifiable neurons were pyramidal (25 
of 29), consistent with estimates that 70%-90% of neu- 
rons in the rat cortex are pyramidal cells (Peters and Kara, 
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Figure 2. Histograms of Labeled Neurons in Each Cortical Layer of 
P15 Rat Brains Resulting from Injections at E14, E15, and E17 
Retroviruses label the older and newer progeny of infected cells. Neu- 
rons in the deepest layers of the cortex are produced first and are 
largely already generated by the time of the earliest injections. The 
deep layers are therefore labeled proportionately less than the more 
superficial layers. The deeper cortical layers also contain fewer neu- 
rons than the upper layers (Beaulieu and Colonnier, 1989), exaggerat- 
ing this effect. Progressively later injections labeled an increasingly 
restricted population of superficial layer neurons. Laminar patterns of 
retrovirally labeled neurons are consistent with the timing of neurogen- 
esis determined in birth dating experiments using [3H]thymidine, sug- 
gesting that the behavior of infected cortical progenitors is not obvi- 
ously different from the behavior of unlabeled cortical progenitors. 

1985; Werner et al., 1985). Later injections labeled pro- 
gressively fewer pyramidal neurons: 57% after E15 injec- 
tion (47 of 83) and 42% after E17 injection (25 of 59), with 
corresponding increases in labeled nonpyramidal neu- 
rons. Since pyramidal and nonpyramidal neurons in each 
cortical layer show overlapping periods of neurogenesis 
(Miller, 1986), these percentages probably reflect the pref- 
erential location of nonpyramidal neurons in the more su- 
perficial cortical layers formed relatively later in gestation. 
We concluded from histological analysis that retroviral la- 
beling did not obviously alter normal cortical neurogenesis 
or differentiation, that retroviral labeling was not limited 
to particular neuronal types, and that retrovirally labeled 
progenitors behaved in a fashion indistinguishable from 
that of unlabeled progenitors. 

Clonal Analysis with PCR 
Clonal analysis was performed by PCR amplification of 
retrovirally encoded DNA tags. Cells that contained the 
same DNA tag were interpreted as originating from the 
same progenitor cell, while cells with different DNA tags 
were interpreted as originating from distinct progenitors. 
The reliability of clonal assignment with retroviral libraries 
depends upon the degree to which the number of distinct 
retroviral tags exceeds the number of infective events in 
each experiment, as coincidental infection of two different 
progenitors by retroviruses with the same tag produces 
the spurious appearance of a single clone (Walsh et al., 
1992), 

The AP-encoding retroviral library was prepared from 
- 3400 plasmid colonies (Walsh, 1995). The final complex- 
ity of the AP-encoding retroviral library was assessed em- 
pirically by amplifying DNA tags from clones of NIH 3T3 
cells infected in vitro and determining the frequency at 
which apparently identical tags appeared more than once. 
The rate of repetition was then used in a Monte Carlo 
simulation described in detail elsewhere (Walsh et al., 
1992) to calculate the complexity of the library and the 
probability of coincidental double infections by a single 
tag in any given experiment. In the first in vitro experiment, 
amplification of 34 clones yielded 2 tags present as dupli- 
cates. In a second experiment, amplification of 46 clones 
yielded 3 duplicate tags and 1 triplicate. The tag present 
in triplicate in the second experiment matched 1 of the 
duplicates in the first experiment, and the insert ( - 190  
bp) corresponded approximately in size to the best-known 
repeated sequence in the Arabidopsis thaliana genome 
(from which DNA tags were derived; Simoens et al., 1988). 
The 190 bp tag may be somewhat overrepresented in the 
library, although it did not appear with high frequency in 
the in vivo experiments. With the possible exception of 
the 190 bp insert, the observed repeat rate suggested that 
- 250-400 other tags, distinguished by restriction enzyme 
digestion, were present in roughly equal ratios. 

Based on the observed repeat rate of tags in the in vitro 
experiments and on the predicted complexity of the library, 
Monte Carlo simulations suggested that experiments with 
<5 clones showed a p < .05 probability of containing coinci- 
dental double infections, even when the highly repeated 
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Table 1. Cell Type and Rostrocaudal Position of Clones Labeled by Retroviral Injections at E15 

Clone Number Clusters 

Experiment 1 
1 IV cells (2) [7700] 
2 II/111 pyramid [9300] 
3 Cortical astrocytes 

Experiment 2 
4 III neuron [7600]' II pyramid [5500] 

Experiment 3 
5 III neuron [11100] b II np: m ultipolar [11000] b 
6 V pyramid [3600] 
7 III pyramid [5900]" 
8 II pyramid [10800] IV np: multipolar(2) [58-6200]' 
9 Ill pyramid [3800]" 

Experiment 4 c 
10 VZ, III pyramids (4) [50-5200]" 

Experiment 5 c 
11 Hippocampal pyramid [6700] b V pyramid [5100] b 
12 II pyramid [7000] 

Experiment 6 c 
13 V pyramid [5000] IV np [2500]' 

Experiment 7 
14 VI neuron [10500] Astrocytes (>3) [8400] 
15 II np: bipolar [11500] III pyramid [8000]' 
16 II np: bipolar [5000] 
17 Piriform neuron [5650] II cell [2600] 

Experiment 8 
18 IV neuron [4400] 
19 II, IV np: bipolar (2) [49-5200] b IIIIII neuron [4600] ~ 
20 Hippocampal pyramid [10700] b II neurons (2) [9800] b 
21 Astrocytes (>3) [6850-7150] 
22 IV inverted pyramid [6950] 
23 Cortical gila (>3) [12100] 
24 II np: multipolar [11100] II/111 pyramid (2) [82-8300] 
25 g/ill np: multipolar [12200] Piriform neuron [5650] 
26 VNI pyramid [3700] 
27 II neurons (4) [10400] II np: multipolar (2) [73-8500] 

II np: chandelier [3500] 

ll/lll np: multipolar [8200] 

III pyramid (2) [59-6600] 
II neuron [7700] b 

II pyramid [2400] 
Hippocampal pyramid [8000] b 

Piriform neuron [5650] 

III neuron [3800] 

Clones are from eight experiments, but only five brains, since separate hemispheres of the same brain were considered separate experiments. 
Widespread clones (48% of total) are divided into columns that represent clusters, defined as >/1 sibling cell(s) ~1.5 mm from one another and 
>1.5 mm away from other sibling cells. For each cell or cluster, the distance caudal (in micrometers) to the rostral tip of the olfactory bulb is listed 
(brackets). Most subunits were separated primarily in the rostrocaudal direction, but some clones had subunits separated >13 mm mediolaterally, 
at a similar rostrocaudal location. Morphology of cells was determined by AP staining alone, allowing definition of neuronal versus glial identity 
in > 90% of labeled cells, and allowing identificaiton of broad neuronal classes in - 80% of labeled neurons. Some brains were analyzed at P3; 
the brain is smaller at this age, and distances between cells/clusters appeared to be correspondingly smaller. Also, not all migration of neurons 
is complete from the VZ/SVZ at this age. Clone 11 also contained a labeled cell in the striatum/internal capsule, probably a glial cell. 
• Additional retrovirally labeled, morphologically similar cells were near to the cell indicated but were PCR negative; such cells represent likely 
sibling cells, but their clonal identity is not certain. 
b Separated by i>3 mm mediolaterally. 
c Brains analyzed at P3. 

tag was ana lyzed .  The viral inoculum was t i t rated in o rder  
to infect <5  c lones in most  exper iments .  To  bias our  da ta  

against  a ma jo r  result obse rved  in the study,  we ana lyzed  
one E17- in jected brain that  con ta ined  30 clones; this ex-  
per iment  is d iscussed in deta i l  be low.  Even in exper imen ts  
with >5  c lones per  brain, appea rances  of the 190 bp tag  
did not occur  in w idesp read  c lones,  and no d iscern ib le  
d i f ference in c lonal  pat terns was observed  be tween bra ins 
with <5  or >5  c lones per  brain (Table 1 ; Tab le  2). 

PCR ampl i f icat ion was  successfu l  for - 4 5 %  of retrovi-  
ral ly labe led t issue samples .  Quant i ta t ive  analys is  (data 

not  shown)  ind ica ted that  AP-pos i t i ve /PCR-pos i t i ve  neu- 
rons showed  cell  t ypes  and laminar  d is t r ibut ion indist in- 
gu ishab le  f rom the d is t r ibut ion of all AP-pos i t i ve  cells, sug-  
ges t ing  that  successfu l  PCR ampl i f ica t ion was not  
preferent ia l  for  any par t icu lar  cell type.  Ef f ic iency of the  

PCR react ion w a s  s o m e w h a t  h igher  (average -65%) 
when I~-galactosidase was used as a h is tochemica l  
marker  in s imi lar  exper iments ,  sugges t ing  that  the AP re- 
act ion product  m a y  inhibi t  PCR somewhat .  S ince  the y ie ld 
of the PCR was less than 100%,  the number  of s ib l ing 
cel ls per  c lone, and the dist r ibut ion of s ib l ing cel ls, is un- 
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Table 2. Cell Types and Rostrocaudal Position of Clones Labeled by Injections at E17 

Clone Number Clusters 

Experiment 1 
1 Deep entorhinal neuron [13600]" 
2 IV neuron [7000] 
3 II neuron [10800] 

Experiment 2 
4 III pyramid [18100] 

Experiment 3 
5 Cortical astrocytes (>3) 
6 Cortical astrocytes (>3) 

Experiment 4 
7 III pyramid [12500] 
8 II np: bipolar [3200] 
9 Cortical astrocytes (>4) 

Experiment 5 
10 III np: bipolar [8700] 
11 III np: multipolar [9400] 
12 Cortical astrocytes (>3) 

Experiment 6 
13 Perirhinal neuron [14500] 
14 II np: bipolar [14400] 
15 Cortical astrocytes (>8) 
16 Cortical astrocytes (>6) 
17 Cortical astrocytes (>20) 
18 Cortical glia (>1) 
19 Cortical gila (>2) 
20 Cortical glia (>1) 
21 Cortical astrocytes (>3) 
22 Cortical glia (>1) 
23 IV np: neuroglioform [3800] 
24 III np: bitufted [12800] 
25 II/111 np: bitufted [15800] 
26 III pyramid [16300] 
27 II rip: multipolar [12000] 
28 II np: multipolar [5900] 
29 III np: multipolar [9200] 
30 II np [11200] 
31 III np [18000] 
32 III inverted pyramid [15600] 
33 II cell [12000] 
34 III np: multipolar [5900] 
35 III neuron [6200] 
36 II/111 neuron [11900] 
37 Deep perirhinal neuron [17800] 
38 III pyramid [11100] 
39 III pyramid [10600] 
40 II rip: multipolar [7600] 

IV pyramid [5000] 

II np: bipolar [8000] 

III np:bipolar [3100] 

VNI neuron [8700] 
Perirhinal neuron [12200] 

Each experiment represents one hemisphere of five brains analyzed at P15. Other conventions are as in Table 1. Widespread clones were unusual 
following E17 injection. Unlike widespread clones seen after E15 labeling, widespread clones labeled at E17 contained only 2 cells, each in one 
of two widely separated locations. 
a Additonal retrovirally labeled, morpholigically similar cells were nearby (see note to Table 1). 

derest imated.  No correct ion was made for this undersam- 
piing however ,  since any numer ical  correct ions would re- 
quire making assumptions. 

Neuronal Clones Formed Two Categories 
Clonal analysis of brains injected at E15 or E17 showed 
two vir tual ly nonover lapp ing patterns of clones: wide- 
spread clones (def ined as c lones distr ibuted over >1.5 
ram) and c lones that consisted of single cel ls or  single 
clusters of cells grouped within 1 mm (Table 1; Table 2). 

Of the clones labeled by E15 injections, 5 2 %  were clus- 
tered or single cells. Clustered clones conta ined from 3 
to >20 gila, or 2 - 4  morpholog ica l ly  similar neurons within 
one, or occasional ly  two, cort ical laminae.  Clustered 
c lones contain ing >1 neuron were observed more com- 
monly  in retroviral mater ial  stained with B-galactosidase 
than in the present AP mater ial ,  most  l ikely because the 
PCR was more  eff icient in earl ier studies (Walsh and 
Cepko,  1992, 1993). Many  of the s ingle-neuron clones 
listed in Table 1 and Table 2 were part of clusters of mor- 
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Figure 3. Retrovirally Labeled Sibling Cells Show Non random Spacings 
(A) Distances between sibling cells in clones labeled with the AP- or 
I~-galactosidase-encoding retroviral libraries. For AP data (open bars), 
only rostrocaudal spacing was measured. Measurements were made 
by counting the number of sections separating cells and multiplying 
that number by the section thickness (usually 100 pm). For each clone, 
all possible segments connecting sibling cells were measured. Note 
that intersibling spacings are very commonly ~0.5 ram, but rarely 0.5- 
1.5 mm. Intersibling spacings are also commonly 1.5-3.0 ram, 4-5.5 
ram, and possibly 7-8.5 mm, suggesting a reiterated periodic spacing 
of 2-3 mm between sibling cells. To ensure that the periodicity was 
not artifactual due to small sample size, previously published data 
using a J3-galectosidase-encoding library (adapted from Walsh et al., 
1992) were reanalyzed (closed bars), with distances measured from 
fiat-mounted sections in a direction parallel to the lateral ventricle. 
Similar preferred spacings were observed in the I~-galactosidase 
material. 
(B) Distances between retrovirally labeled nonsibling cells do not show 
preferred spacings. The histogram shows the distribution of 2239 pair- 
wise rostrocaudal distances (determined as the number of sections 
between cells multiplied by the section thickness) between retrovirally 
labeled cells that contained different PCR tags. Distances were com- 
puted between AP nonsibling cells within the same brain, as well as 
within littermate brains injected and processed identically (i.e., E15 
versus E15 or E17 versus E 17). The distribution of pairwise distances 
appears to approximate a =random" distribution in one dimension 
(see [C]). 
(C) Test of the nonrandom distribution of intersibling intervals. The 
heavy line shows the cumulative distribution of 71 pairwise rostrocau- 
dal distances among AP-labeled cortical cells with the same tag after 
E15 labeling. The distribution of intersibling distances differs signifi- 
cantly (p == .003) from either a model of diffusion by a random walk 
(smooth curve) or the cumulative distribution of observed pairwise 
distances between nonsibling cells (B), suitably rescaled (tiny stair 
steps). The horizontal scale in either model minimizes the largest verti- 

phological ly similar cells for which PCR was successful 
in only 1 cell (see footnotes to Table 1). The finding of 
clustered neuronal clones confirms earl ier descript ions of 
retrovirally labeled clusters (Parnavelas et al., 1991; Grove 
et al., 1993; Luskin et al., 1993), which have suggested 
considerable morphological  and biochemical homogene- 
ity among closely clustered retrovirally labeled cells. 

Cort ical  S ib l ing  Cel ls Were Spaced at Preferred 
Spat ia l  In terva ls  
The focus of the present study was the structure of the 
widespread clones, which are defined by progeny dis- 
persed over >1.5 mm. Widespread clones represented 
48% of clones labeled by E15 injections of the AP library 
(Table 1), a proport ion comparable to that seen in recent 
studies using a I~-galactosidase-encoding library (Walsh 
and Cepko, 1993). A signif icant majority of retrovirally la- 
beled neurons (730/0) were contained in widespread 
clones. Neurons in widespread clones were spaced prefer- 
entially at certain intervals from their siblings. Rostrocau- 
dal distances between sibling cells were determined by 
counting the num ber of coronal sections separating sibling 
cells and mult iplying that number by the section thickness 
(generally 100 p.m). Sibling cells were most commonly lo- 
cated 0-0.5  mm from each other. While it was very rare 
for sibl ing cells to be spaced 1.0-1.5 mm apart (Figure 3; 
Table 1; Table 2), it was very common for sibling cells to 
be spaced 2 -3  mm or even 4 -6  mm apart, suggesting a 
periodic spacing of sibl ing cells corresponding to 2 -3  mm 
in the adult brain. To rule out a spurious periodicity caused 
by a small sample size, a second previously published 
data set (Walsh and Cepko, 1992) was reanalyzed in terms 
of intersibling spacings. This data set showed the same 
2-3  mm periodicity (Figure 3). 

Periodic spacing of sibl ing cells within widespread 
clones could be caused by mechanisms acting within a 
clone, but could also be caused by nonuniform patterns 
of neurogenesis or retroviral labeling. These possibil it ies 
were dist inguished by determining that there was no simi- 
lar periodicity in the spacing between retrovirally labeled, 
nonsibl ing cells within a brain (Figure 3B). Compared with 
the distr ibution of nonsibl ing cells, sibl ing cells showed a 
2.5-fold increased tendency to cluster (i.e., interceU dis- 
tance of ~0.5 mm), a 5- to 10-fold decreased tendency to 

cal distance between the observed and model distributions (Kolmo- 
gorov-Smirnov distance). The largest differences between the ob- 
served and either null hypothesis distribution reflected clustering of 
sibling cells at <500 I~m and the relative absence of intersibling dis- 
tances of 1.0-1.5 mm. An approximate p value is obtained from simula- 
tions (Dallal and Wilkinson, 1986) of Kolmogorov-Smirnov tests 
against a normal distribution whose mean and SD match the sample 
moments. The p value is approximate since the present situation dif- 
fers from that simulated in several respects. One parameter is fit rather 
than two, and sample moments are not used. The parent distribution is 
not normal, and the sampling is of cell locations rather than of pairwise 
distances. Fitting to minimize the Kolmogorov-Smirnov is necessarily 
conservative, since no other choice of parameter can produce a larger 
p value. Both the direction and magnitude of the remaining approxima- 
tions are unknown. 
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appear 1.0-1.5 mm or 3.5-4 mm apart, and a 1.5- to 2-fold 
increased tendency to appear 2-3 mm apart. Therefore, a 
mechanism intrinsic to cortical progenitor cells determines 
the periodic spacing of their progeny. 

To test whether the nonuniform intersibling spacing dif- 
fered significantly from a random spacing, we compared 
the intersibling spacings generated by E15 labeling (see 
Table 1) with a random diffusion model or with the ob- 
served spacings between nonsibling cells (Figure 3B). 
When the test curves were suitably rescaled to minimize 
the difference from the experimental data by minimizing 
the Kolmogorov-Smirnov distance (Dallal and Wilkinson, 
1986), the intersibling distances still differed significantly 
(p --- .003) from either test curve (Figure 3C). The greatest 
difference between the intersibling spacings and the non- 
sibling spacings occurred at 0-0.50 mm, due to clustering, 
and at 1.5 mm, a distance at which sibling cells were rarely 
spaced. We concluded that, while some progenitors pro- 
duced clustered progeny within 0.5 mm of one another, 
other progenitors did not form simple clusters, but instead 
tended to migrate some minimum distance before dividing 
to form another daughter cell. 

Phenotypic Analysis of Clustered 
and Widespread Clones 
Clustered sibling cells showed similar laminar location and 
morphology (see Table 1 ; Table 2). Clustered sibling cells 
(those within 1.5 mm of one another) occurred either in 
the same layer, or in layers II and III, II and IV, or III and 
IV. Interestingly, similar patterns were seen regardless of 
whether the clustered sibling cells were part of a larger, 
widespread clone or whether they comprised a complete 
clustered clone (Figure 4; Figure 5). The morphology (Par- 
navelas et al., 1991 ; Grove et al., 1993; Luskin et al., 1993), 
immunohistochemical properties (Mione et al., 1994), and 
ultrastructure (Parnavelas et al., 1991) of retrovirally la- 
beled neurons that form clusters ~<0.5 mm across have 
been studied in detail by other labs. The present analysis 
with AP histochemistry confirms earlier suggestions that 
clustered clones contain mainly cells of similar mor- 

phology.  
While clustered sibling cells showed similar location and 

morphology, widely dispersed sibling cells often showed 
different phenotypes. Neuronal phenotype can be defined 
by many cellular features. Most strikingly, some wide- 
spread clones contained neurons in both neocortex and 
piriform/entorhinal cortex (6 of 67 clones; 6 of 18 wide- 
spread clones), neocortex and hippocampus (2 of 18 wide- 
spread clones), or striatum (1 clone, though the single 
striatal cell in this clone was probably glial); and the cells 
in these distinct forebrain structures took on locally appro- 
priate, though widely divergent, morphologies (see Table 
1; Table 2). In addition, unlike clustered clones, in which 
neurons labeled at E15-E17 did not cross layer IV, some 
widespread clones contained cells in widely different corti- 
cal laminae (see Table 1). Furthermore, 2 of 18 widespread 
clones included neurons in one region and glia in another 
(see Figure 4), confirming an observation of occasional 
neuron-glia clones also observed with a I~-galactosidase- 
encoding retroviral library (Walsh and Cepko, 1992, 1993). 
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Figure 4. Three-Dimensional Reconstructions of Clones from Experi- 
ment 7 That Were Labeled Following Retroviral Injection at E15 
Cells that constitute the green clone are illustrated in (A)-(E). (A) repre- 
sents a layer Vl neuron, while 2.1 mm further rostrally, the same clone 
contains a cluster of several darkly staining astrocytes in the white 
matter (S). Further rostrally (1.8 mm and 2.5 mm), the same clone 
contains 2 very similar neurons (layer III pyramidal cells) that are <1 
mm from each other (C and D). Finally, 2.8 mm further rostrally, the 
same clone contains another layer III neuron that is incompletely fil- 
led (E). 

Finally, 8 of 18 widespread clones contained neurons with 
nonpyramidal morphology in one neocortical location and 
pyramidal morphology in another (see Table 1; Figure 5). 
Neuronal subtype identifications were based on morpho- 
logical criteria only, rather than combining morphology, 
ultrastructure, and immunohistochemistry. For example, 
some multipolar cells in layer IV constitute "star pyramids" 
that may be functionally related to pyramidal neurons (Pe- 
ters and Jones, 1984). Nonetheless, of 18 widespread 
clones (13 from E15, 5 from E17), 17 (94%) contained cells 
with multiple phenotypes defined either as being located in 
neocortex plus nonneocortical areas, as being pyramidal 
plus nonpyramidal neurons, or as being neurons plus glial 
cells. If widespread clones containing layer IV multipolar 
neurons were not counted, 14 of 18 widespread clones 
(78%) still contained cells with multiple phenotypes. 

Clones Labeled at E15 Differed Systematically from 
Those Labeled at E17 
When retroviral labeling was performed at E 17 rather than 
E15, the structure of cortical clones was systematically 
different. Widespread clones were almost 4-fold less com- 
mon as a percentage of the total number of clones (12.5% 
versus 48%), a difference significant at p < .0013 (7. 2 test). 
The lower frequency of widespread clones after E17 injec- 
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Figure 5. Cell Types in a Widespread Clone from Experiment 3 That 
Resulted from Retroviral Injection at E15 
Specific sections from the coronal series and cells that constitute the 
widespread clone are drawn in (A)-(C). (B) and (C) are <1 mm apart 
and show very simitar laminar location and morphology (layer IV nonpy- 
ramidal, multipolar cells), whereas (A), which is - 4.8 mm away, shows 
very different morphology (layer II pyramidal neuron). The layer IV 
neurons did not show obvious spines on their dendrites, suggesting 
that they are probably not =star pyramids" (Peters and Jones, 1984). 
Also note that the composition of the 2 subunits of this widespread 
clone are comparable to other clones that represent single clusters 
(e.g., clones 1 and 2; see Table 1). 

tions was confirmed by performing one E17 experiment 
with an especially large viral inoculum. If the widespread 
clones seen after E15 injection were spurious, then wide- 
spread clones would be especially common after injection 
of a large inoculum. However, even injection of a large 
viral inoculum into a single E17 brain showed a very low 
incidence (7%) of widespread clones, a pattern very differ- 
ent from that seen after E15 injections (48%). 

Widespread clones were not only unusual after E17 in- 
jection, they also contained few neurons. All 5 of the wide- 
spread clones labeled with the AP-encoding library con- 
tained only 2 cells each (Table 3). All widespread clones 
labeled at E17 with a previous l~-galactosidase-encoding 
library also contained 2 cells each (Walsh and Cepko, 
1992). Widespread clones labeled at E17 also accounted 
for a much lower percentage of the total number of retrovi- 

rally labeled neurons (29% versus 73%), suggesting that 
retroviral injections later in development label progenitors 
at later stages of neurogenesis. 

Discussion 

This report characterizes a new retroviral library encoding 
AP as a histochemical marker and demonstrates that AP- 
labeled cortical progenitors show proliferative behavior in- 
distinguishable from that of normal progenitors. PCR am- 
plification facilitated determination of clonal relationships 
among labeled cells. While PCR analysis was not success- 
ful for 100% of retrovirally labeled cortical cells, neither 
was it selective for any particular cell type, and so ap- 
peared to provide a fair sample of normal cortical progeni- 
tor behavior. Although the clonal patterns represent an 
end result of many complex developmental processes, 
including neurogenesis, migration, and cell death, the 
data suggest some tentative conclusions and a testable 
model of cortical cell lineage. 

Clusters and Widespread Clones 
Cortical clones labeled at E15 or E17 were distributed in 
the cortex as clustered and widespread clones, definable 
both by location and by cell morphology. Although cells 
in clustered clones were usually not nearest neighbors 
(being separated by 300-600 I~m typically, i.e., >110 cell 
diameters), clustered clones imply a progenitor that does 
not migrate widely as it divides 1-4 times to produce a 
cluster of a relatively uniform cell type. Clustered clones 
also show substantial immunohistochemical and ultra- 
structural uniformity (Parnavelas et al., 1991 ; Grove et al., 
1993; Luskin et al., 1993), suggesting that some progeni- 
tors undergo multiple rounds of cell division, producing 
the same or similar cell types each time. 

In contrast, widespread clones consisted of nonran- 
domly distributed clonal subunits, each subunit being oth- 
erwise indistinguishable from a clustered clone. A subunit 
is defined as 1 or more sibling cells located within 1 mm 
of one another, and separated from other sibling cells by 
>1.5 mm. The widespread dispersion of subunits is most 
easily explained by the migration of progenitor cells. This 

Table 3. Comparison of Clonal Patterns after E15 or E17 Injection 

E15 E17 

Widespread clones (as percentage of total) 
Percentage of neurons that are in widespread clones 
Mean number of subunits per widespread clone 
Maximum number of subunits per widespread clone 
Mean number of neurons per widespread clone 
Maximum number of neurons per widespread clone 
Mean number of neurons per subunit 
Maximum number of neurons per subunit 
Mean number of neurons per clustered clone 
Maximum number of neurons per clustered clone 

48O/o 12o/0 
73% 29o/o 
2.62 2.0 
4 2 
3.23 2.0 
7 2 
1.3 1.0 
4 1 
1.1 1.0 
4 1 

Demonstrably widespread clones were observed much more commonly following injections at E15 (48%) than at E17 (12%), a difference significant 
at p < .0013 (~2 test). Widespread clones formed after E17 injection contained fewer neurons (maximum of 2) and fewer subunits (only 2 have 
ever been seen). Clusters and subunits formed after E17 injection also appeared to be somewhat smaller than those formed after E15 injections, 
although the sample size is small. 
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migration has been suggested by prior retroviral studies 
as well as direct in vitro observation (Fishell et al., 1993; 
Walsh and Cepko, 1993). The periodic spacing of subunits 
would then be determined by the rate and trajectory of 
progenitor cell migration and by the length of the progeni- 
tor's cell cycle. The distance through which a progenitor 
moves need not be large to generate the 2-3 mm periodic- 
ity seen in the adult brain. The brain increases in length 
about 4-fold from E18 to P15, so that the 2-3 mm periodic- 
ity at P15 corresponds to - 0 . 5  mm in the E18 cortex, or 
perhaps 100-250 I~m per cell cycle (20-24 hr) in the E18 
ventricular zone (Waechter and Jaensch, 1972). This rate 
of movement is well within the range observed by Fishell 
et al. (1993). Although most of the movement they ob- 
served fit a random walk, migrating cells appeared to be 
directed systematically rostrally or caudally upon encoun- 
tering the longitudinal border between cortex and striatum 
(see their Figure 4), consistent with the pattern of disper- 
sion also suggested by retroviral library analysis after 6 
day survival (Walsh and Cepko, 1993). Some AP clones 
showed strong evidence for systematic spacings of 2-3 
mm (see also Figure 6 of Walsh and Cepko, 1992), while 
others did not, consistent with both systematic and random 
elements governing the migratory processes that produce 
widespread dispersion. 

A Hierarchical Model of Cortical Plate Lineage 
The data suggest a model of cerebral cortical cell lineage 
(Figure 6) that postulates two types of cortical progenitor 
cells, distinguishable by their migratory properties and by 
the fate of their daughter cells. A migratory, multipotential 
progenitor divides asymmetrically in a stem cell fashion, 
producing a nonmigratory cell and regenerating a multipo- 
tential cell. Nonmigratory cells produced by divisions of the 
multipotential cell can themselves differentiate or divide 1- 
4 times to generate multiple cells. Some of the nonmigra- 
tory cortical progenitors appear to generate single neu- 
ronal types over multiple cell divisions. Labeling of the 
multipotential progenitor at E15 would provide an equal 
probability of retroviral integration into the nonmigratory or 
migratory daughter cell. Integration into the nonmigratory 
daughter would label a single cluster or single cell, 
whereas integration into the migratory daughter would la- 
bel a widespread clone. This might account for the consis- 
tent labeling of - 5 0 %  clustered and 50% widespread 
clones in this report and a previous one (Walsh and Cepko, 
1993). Each subunit would correspond to a cell cycle of 
the migratory progenitor, with the observed maximum 
number of subunits (4) close to the estimated number of 
remaining neurogenetic cell cycles between E16 and E20 
(Waechter and Jaensch, 1972). Retroviral injections at 
E17 would infect a more mature progenitor with fewer re- 
maining cell divisions. Regardless of which of the 2 daugh- 
ter cells were labeled by the retrovirus, widespread clones 
would be labeled less commonly, and the widespread 
clones would contain fewer subunits, as was observed. 

The timing and pace of cortical neurogenesis make it 
unlikely that alternative models of cell lineage could ex- 
plain all of our data. Neurogenesis in the cortex proceeds 

2-3 mm 
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Figure 6. Hypothetical Model of Cell Lineage in the Mammalian Cere- 
bral Cortical Plate 
Cerebral cortical ceils are derived from two proliferative zones (the 
ventricular [VZ] and subventricular [SVZ] zones) and migrate from the 
proliferative zones to the cortex proper. The lineage of I multipotential 
cell is illustrated. The multipotential cell (m) migrates as it divides, 
sequentially producing 3 nonmigratory progenitors at spatiotemporal 
intervals and regenerating a multipotential cell in =stem cell" fashion. 
Each nonmigratory progenitor then behaves essentially indepen- 
dently, dividing more than once (closed cells), directly differentiating 
(stippled cell), or dividing once (hatched cells), to form 3 distinct cell 
clusters. Since cells in the rodent cortex are added in a roughly inside- 
out sequence, the oldest nonmigratory progenitors would tend to form 
deeper neurons, and the newer nonmigratory progenitors tend to form 
more superficial neurons. Infection of the multipotential precursor at 
E15 would result in an equal probability of integration of virus into the 
migratory or nonmigratory progenitors. Integration into the nonmigra- 
tory daughter would label a single clustered clone (or single cell), 
whereas integration into the migratory daughter would label a wide- 
spread clone consisting of several subunits. In contrast, infection at 
E17 would label a progenitor with fewer remaining cell divisions. No 
matter which daughter cell the retrovirus integrated into, widespread 
clones would be rare and small. 

from E12 to E20, with the cell cycle length beginning at 
- 12 hr at E12 and gradually lengthening to 22 hr on E20 
(Waechter and Jaensch, 1972; Bayer and Altman, 1991), 
at which time neurogenesis ceases and gliogenesis con- 
tinues. A limited number of cell cycles (5-6) is available 
after E15 infection. Any model that derives all neurons 
directly from an asymmetrically dividing stem cell could 
not explain the largest neuronal clones observed (7 neu- 
rons) and would not provide a straightforward explanation 
for the occurrence in a single clone of 2 or more subunit 
clusters, each composed of multiple cells (see Table 1, 
clones 14, 20, and 27). A hierarchical model would allow 
formation of cells =in parallel," allowing generation of larger 
neuronal numbers over a limited time period. 

The proposed model of cortical lineage would reconcile 
previously conflicting retroviral analyses of cell lineage. 
Clusters of retrovirally labeled cells with uniform pheno- 
types (Grove et al., 1993; Luskin et al., 1993; Parnavelas 
et al., 1991) can be recognized as terminal branches of 
widespread lineage trees. A transition from a multipoten- 
tial to a potentially more restricted progenitor also fits well 
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with previous t ransplantat ion studies that suggest that 
ear ly cort ical progeni tors are mult ipotent ia l ,  but become 
commit ted to produce progeny with specif ic neuronal fates 
(McConnel l  and Kaznowski ,  1991; Barbe and Levitt, 1991) 
before complet ion of the f inal cell division. The suggest ion 
that migratory progenitors account  for the bulk of nonradial  
clonal d ispersion in the cor tex would also reconci le the 
presence of w idespread clonal  d ispersion with the guid- 
ance of most  postmitot ic cort ical neurons a long radial glial 

f ibers (Rakic, 1972; O'Rourke et al., 1992). 

S tem Cel l  and Non-Stem Cell Progenitors 
The existence of mul t ipotent ia l  cort ical progeni tors with 
stem cell propert ies has been suggested by  recent in vi t ro 
studies (Reynolds and Weiss, 1992; Davis and Temple,  
1994). Whether  the migratory  mult ipotent ia l  progeni tor  de- 
scribed here meets  all cr i ter ia for a stem cell is uncertain. 
These cri ter ia include mult ipotent ial i ty,  sel f -regenerat ion, 
and persistence throughout  life (Stemple and Anderson,  
1992). Persistent cells with s tem cell propert ies have been 
isolated from the adult brain in the subventr icular  zone 
between the str iatum and ol factory bulb (Reynolds and 
Weiss, 1992; Davis and Temple,  1994). A minor i ty (<5%) 
of retroviral ly labeled c lones (e.g., P3-M [right] c lone C 
and P3-S [left] c lone A in Table 1 of Walsh and Cepko,  
1993) also g ive rise to large numbers of progeny,  including 
mult ip le cells in the prol i ferat ive layers, and may reflect 
retroviral label ing of true s tem cells. 

The model  of cerebral  cort ical l ineage differs from pat- 
terns of cell l ineage descr ibed in o ther  brain regions and 
may  not apply to all stages of cort ical neurogenesis.  Pro- 
genitors in the ret ina and tectum do not appear  to be highly 
migratory, and l ineage subuni ts have not been reported 
in these t issues (Turner et al., 1990; Gray and Sanes, 
1991). Very ear ly stages of cort ical neurogenes is  also may 
show a remarkab le  lack of sibl ing cell d ispersion (O'Leary 
and Borngasser,  1992, Soc. Neurosci. ,  abstract). Perhaps 
preplate neurons, which appear  to form a deve lopmenta l  
scaffold for the cortex, fo l low dif ferent rules (Al lendoerfer 
and Shatz, 1994). 

The proposed model  of cortical deve lopment  has an 
important  precedent  in the CNS of Drosophi la  melanogas-  
ter, where mult ipotent ia l  s tem cells te rmed neuroblasts 
g ive rise to gangl ion mother  cells, which div ide once to 
form pairs of neurons (Campos-.Ortega, 1993; Goodman 
and Doe, 1993). Whereas genet ic  studies in Drosophi la 
have def ined mutat ions that affect specif ic steps in inverte- 
brate neurogenesis,  the proposed model  of  cortical cell 
l ineage presents a f ramework  for interpret ing defects in 
ver tebrate neurogenesis.  For example ,  genet ic  disorders 
that act on migratory versus nonmigra tory  progeni tors 
should produce very  di f ferent cerebral  cort ical pheno- 
types. The cerebral  cort ical mal format ions seen in one 
disorder, tuberous sclerosis, are thought  to  be clonal (Go- 
mez, 1988). Tuberous sclerosis shows prominent  lesions 
(cortical tubers) that conta in clustered cel ls with highly 
di f ferent iated but abnormal  morphologies.  These lesions 
may reflect a disorder of the nonmigra tory  progenitors. 
Other disorders, such as per iventr icular  heterotop ia  (Hut- 
ten locher  et al., 1994), show abnormal  cells throughout  the 

ventr icular  zone,  suggest ing a defect  in a less regional ly 
constrained progenitor.  A c learer  understanding of cell 
l ineage in the cerebral  cor tex could serve as a basis for 
interpret ing genet ic  disorders and the genet ic  mecha- 
nisms of cort ical deve lopment .  

Experimental Procedures 

Retroviral Vectors 
Preparation of the AP retroviral library has been previously presented 
0Nalsh, 1995). Size-selected genomic DNA fragments (<450 bp) from 
Arabidopsis thaliana were inserted into the Xhol site of the DAP plas- 
mid (Fields-Berry et al., 1992). Bacteria from 3400 colonies were 
pooled, and plasmid DNA was isolated using standard techniques. 
Purified plasmid DNA was transfected into the CRE packaging cell 
line to form a transient retroviral supernatant (Cepko, 1992). Transient 
supernatant from -20,000 transfected cells was then used to infect 
¥2 cells (Cepko, 1992), and the resulting - 20,000 packaging colonies 
were selected by growth in G418-containing medium. Producer cells 
were grown to confluence, and retroviral supernatant was isolated, 
concentrated by overnight centrifugation, and stored at -80°C. 

Animal Surgery 
Timed-pregnant Long-Evan's (hooded) rats were purchased from 
Charles River's laboratories. Pregnancies were timed from the day of 
vaginal plug (E0). Birth usually occurred late on E21. Surgical proce- 
dures and injection of the retroviral supernatant into the lateral ventri- 
cles of fetal rat brains are described in detail elsewhere 0Nalsh and 
Cepko, 1992; Cepko etal., 1993). 

Histology and Analysis of Clones 
Animals were sacrificed at P15 by an overdose of Nembutal and per- 
fused with 2%-4% paraformaldehyde in 0.1 M PIPES buffer with 2 mM 
MgCI2, 1.25 mM EGTA. The brains were removed, submerged in fixa- 
tive overnight at 4°C, and transferred to 30% sucrose in PBS at 4°C 
until they sank. Brains were sectioned using a Bright cryostat at 100 
p~m thickness. The sections were mounted onto gel-coated glass slides 
and processed for AP activity (Cepko et al., 1993). Labeled cells were 
detected by microscopic examination of tissue sections. Cell morphol- 
ogies and positioning within the cortex were recorded by photography 
and camera lucida drawings. 

Tissue Analysis with PCR 
Tissue analysis was performed by preparing DNA samples from la- 
beled cells and the surrounding unlabeled cells for amplification by 
PCR, as has been presented elsewhere 0Nalsh and Cepko, 1992, 
1993). We removed the coverslips of histological slides by soaking 
them in a 50 ml centrifuge tube filled with sterile water. Small fragments 
of tissue (approximately 100 x 200 x 200 I~m) containing the nucleus 
of each labeled cell were dissected using a fresh razor blade edge 
for each cell and digested with proteinase K in 1 x PCR buffer at 65°C 
for at least 4 hr. Each well was covered with 30 p.I of mineral oil to 
prevent evaporation. The microtiter plate was then heated for 4-24 
hr at 65°C. Once the tissue was digested, the samples were heated 
to 85°C to inactivate proteinase K and then heated to 95°C for 5 min 
to denature the genomic DNA. A nested PCR protocol was employed to 
increase the sensitivity and specificity of amplification and is described 
elsewhere (Walsh and Cepko, 1992; Walsh, 1995). At least 10% of 
all PCR reactions were negative controls. Any experiments that 
showed false PCR positives were discarded. 

Analysis of PCR Products 
The PCR products from the second PCR reaction were separated on 
3%/1% NuSieve/Seakem agarose gels to determine tag sizes. Each 
tag was then digested with Cfol, Rsal, Alul, Msel, and Mspl. Finally, 
we ran samples of similar initial size side by side on agarose gels to 
allow direct comparison of restriction fragment sizes. 
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