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De novo variants in TCF7L2 are associated with a syndromic
neurodevelopmental disorder
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large-scale sequencing studies have implicated TCF7L2 in intellectual disability and
autism, both the genetic mechanism and clinical phenotype have remained incom-
pletely characterized. We present here a comprehensive genetic and phenotypic
description of 11 individuals who have been identified to carry de novo variants in
TCF7L2, both truncating and missense. Missense variation is clustered in or near a
high mobility group box domain, involving this region in these variants' pathogenicity.
All affected individuals present with developmental delays in childhood, but most ulti-
mately achieved normal intelligence or had only mild intellectual disability. Myopia
was present in approximately half of the individuals, and some individuals also pos-
sessed dysmorphic craniofacial features, orthopedic abnormalities, or neuropsychiat-
ric comorbidities including autism and attention-deficit/hyperactivity disorder
(ADHD). We thus present an initial clinical and genotypic spectrum associated with

variation in TCF7L2, which will be important in informing both medical management

and future research.

KEYWORDS

1 | INTRODUCTION

TCF7L2 encodes a high mobility group (HMG) box-containing transcrip-
tion factor and is located on chromosome 10g25.2-g25.3. Although it
was initially identified and referred to as TCF4 (Castrop et al., 1992;
Clevers, 2006), it should not be confused with the currently designated
TCF4 (ITF2/SEF2-1B/SEF2/E2-2, MIM 602272), which is located on
Chromosome 18 and associated with Pitt-Hopkins syndrome. TCF7L2
mediates canonical Wnt signaling. Signaling by secreted Wnt proteins
through this pathway leads to release of the protein beta-catenin
(CTNNB1) from a repressive degradation complex in the cytoplasm, all-
owing it to accumulate and translocate to the nucleus, where it acts
with DNA-binding factors including TCF7L2 to turn on Wnt-responsive
target genes. TCF7L2 thus acts with beta-catenin as an on/off switch
for transcriptional regulation. Through mostly genome-wide association
studies, TCF7L2 has been involved in a variety of human disease,
including Type 2 diabetes mellitus, colon cancer, and schizophrenia
(Alkelai et al., 2012; Folsom et al., 2008; Grant et al., 2006). TCF7L2 is
also known to be critical in central nervous system development
(Chodelkova et al., 2018; Lee et al., 2017; Nagalski et al., 2013). It has
been directly involved in processes as diverse as neurogenesis and tha-
lamic development to mediating the effects of neuropsychiatric phar-
macological agents including lithium and nicotine (Chodelkova
et al., 2018; Duncan et al., 2019; Lee et al., 2017; Misztal et al., 2017;
Nagalski et al., 2013). Large-scale sequencing studies have also identi-
fied a handful of isolated patients with de novo variants in TCF7L2 in
association with neurodevelopmental disorders, but clinical details are
lacking (lossifov et al, 2014; De Rubeis et al, 2014; Lelieveld
et al., 2016; Jeremy F McRae et al., 2017 (Deciphering Developmental
Disorders [DDD] Study), 2017; Guo et al., 2018; Liu et al., 2018;
Satterstrom et al., 2020; Wang et al., 2020).

autism, intellectual disability, myopia, neurodevelopmental disorder, TCF7L2

TCF7L2 encodes multiple alternatively spliced transcripts,
and alternative splicing has been demonstrated to play an
important role in the function and specificity of the transcrip-
tional repertoire of TCF7L2 in a variety of tissues and contexts,
including the brain (Nagalski et al., 2013; Prokunina-Olsson
et al.,, 2009; Weise et al., 2009). TCF7L2 is significantly intoler-
ant to loss-of-function (LOF) variation, with significantly fewer
observed LOF variants as compared to predicted, as indicated in
the probability of being loss-of-function intolerant (pLl) score of
0.99-1 reported in the gnomAD and ExAC databases. There is
also a region of missense constraint encompassing the HMG
box domain indicating additional intolerance to missense varia-
tion (Samocha et al., 2017).

We describe here the genotypic and clinical phenotypic spectrum
of 11 individuals with de novo, heterozygous variants in TCF7L2 pre-

senting with a neurodevelopmental disorder.

2 | MATERIALS AND METHODS

Patients were ascertained from GeneMatcher through the Match-
maker Exchange Network between May 2019 and December 2020
(Philippakis et al., 2015; Sobreira et al., 2015). TCF7L2 variants were
detected on exome sequencing in 10 individuals, and on a trio autism/
intellectual disability gene panel at a commercial lab in one individual.
No additional plausible candidate gene variants were identified
(Supplementary Table 1). One additional patient was excluded from
the cohort because the phenotype was confounded by perinatal
hypoxic-ischemic injury; the data for this individual (S1) are included
in Supplementary Table 1. Institutional review board approval was

obtained.
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3 | RESULTS

The reported variants in TCF7L2 in our cohort are annotated on the
coding sequence and protein structure in Figure 1. We found a mar-
ked pattern of clustering of the variants, with all missense variants
located in or immediately adjacent to the PFAM predicted HMG box
domain. Two residues, Tyr423 and Asn381, are each affected by two
different missense variants (Figure 1). All of the missense variants
occur at highly conserved locations, and none are found in the
gnomAD database v2.1.1. All truncating variants occurred greater
than 55 nucleotides upstream of the last exon-exon junction and are
predicted to be subject to nonsense-mediated decay. The two splice
variants we report are predicted by splice prediction tools (MaxEnt,
NNSPLICE,SSF) with high likelihood to affect splicing.

Individuals with truncating variants and missense variants in our
cohort present with largely indistinguishable phenotypes, although
sample size is too small to make definitive conclusions regarding this
(see Table 1 and Supplementary Table 1). All individuals present with
developmental delays, including delayed speech and motor mile-
stones. Intellectual abilities range from average cognitive functioning
to mild/moderate intellectual disability. Variability in speech language
abilities is notable regardless of intellectual functioning; abilities range
from individuals who are completely non-verbal to individuals with
hypophonia, dysphasia, and dysarthria. Autism and/or social
communication deficits are frequently observed, and comorbid
attention-deficit/hyperactivity disorder (ADHD) and executive func-
tioning challenges are also seen. One individual has a history of glioma
status post resection and focal motor seizures; this individual was also
found to have a heterozygous TP53 variant of uncertain significance,
and is being managed as Li-Fraumeni syndrome. Myopia is seen in
6 of 11 individuals, and is very severe in two patients. Dysmorphic

features are present in several individuals, but variable (see

Supplementary Table 1). Dermatologic findings include hypertrichosis
(n = 2), mildly hyperextensible skin (n = 1), hyperpigmented plaque
(n = 1), and angiomas (n = 1). Orthopedic findings include abnormal
thorax morphology (n = 2), short distal phalanges (n = 1), talipes
equinovarus (n = 1), scoliolis (n = 1), and abnormal foot morphol-
ogy (n = 2).

We also reviewed previous reports of variation in TCF7L2 to eval-
uate whether phenotypes were consistent with this cohort
(Supplemental Table 2); however, our assessment of previous reports
was limited due to lack of validation, absent clinical descriptions, and
varied methodological approaches. Thus, these limitations preclude
definitive interpretation of previously reported variants.

4 | DISCUSSION

We present a series of 11 patients with de novo, heterozygous vari-
ants in TCF7L2 manifesting with neurodevelopmental abnormalities.
All individuals had initial developmental delays, and intellectual and
verbal abilities ultimately demonstrate significant heterogeneity. Some
individuals have average cognitive functioning and fluent speech,
while others are nonverbal. Other phenotypic features variably
included autism spectrum disorder, social communication disorder,
ADHD, speech-language impairment, dysmorphic features, myopia,
hypertrichosis, and orthopedic abnormalities.

In this cohort, all missense variants occurred in or directly adja-
cent to the HMG box domain. The HMG box domain is an evolution-
ary conserved region that mediates interactions with DNA. This
region is highly missense constrained. Interestingly, we also identify
one splice variant that occurs at the start of an exon immediately fol-
lowing an alternatively spliced exon that is absent in both the canoni-
cal and the highest brain expressed isoforms (c.553-1G>A, Gnomad
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Annotation of loss of function and missense variation in TCF7L2. Top bar indicates exon structure of NM_001146274.1. Second

bar represents protein structure with PFAM amino acid ranges overlaid, that is, the CTNNB1-binding domain (orange) spanning amino acids 1-
259, and the HMG box domain (light blue) spanning 350-417. Predicted splicing and loss-of-function variants are annotated above the figure and
missense variants are annotated below [Color figure can be viewed at wileyonlinelibrary.com]
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v2.1.1). Although speculative, it is thus possible that in addition to LoF
as a possible mechanism of pathogenicity, this variant may lead to
inappropriate exon retention.

No clear phenotypic differences were observed between individ-
uals in this cohort with truncating and missense variants. For example,
the five individuals with missense variants demonstrated a wide range
of cognitive functioning similar to the individuals with truncating vari-
ants. Across the different forms of variation, individuals also shared
findings like myopia and hypertrichosis. We hypothesize that the mis-
sense variation clustering at the HMG domain may interfere with
appropriate DNA binding and interaction, contributing to a similar LoF
effect as the truncating variants.

Given the genomic wide association study findings of intronic
variants associated with diabetes risk, it is also interesting that there
are no reported endocrine abnormalities, including diabetes mellitus,
in any of the patients presented here, although it is important to note
that this cohort reflects a predominately pediatric population and thus
may not yet manifest certain findings.

TCF7L2 has been implicated in oligodendrocyte development and
it has recently been posited that expression in this cellular subtype
may represent an underappreciated mechanism of pathogenicity in
neurodevelopmental (Polioudakis 2019; Ye
et al., 2009; Zhao et al., 2016). Interestingly, recent work on Pitt-
Hopkins syndrome, caused by mutations in TCF4, as well as idiopathic

disorders et al,

autism, has recently implicated oligodendrocyte pathology in autism
(Phan et al., 2020). Further work will be needed to identify more
definitively the cellular subtypes and neuronal circuitry responsible for
mediating the effects of variation in TCF7L2, as well as functional
interrogation of the described variation.

In conclusion, we present 11 patients with de novo, heterozygous
variants in TCF7L2 presenting with a distinct neurodevelopmental dis-
order associated with initial developmental delay, speech-language
difficulties, and variable risk for intellectual disability, autism, ADHD,
myopia, and orthopedic abnormalities. All reported missense variants
occurred in or adjacent to the HMG box domain. The phenotypes of
individuals with missense and truncating variants were indistinguish-
able. Based on this, we hypothesize that the molecular mechanism for
this disorder is haploinsufficiency, although further work to confirm

this is required on a research basis.
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