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Prevalence and mechanisms of somatic
deletions in single human neurons during
normal aging and in DNA repair disorders

JunhoKim1,2,3,4,5, August YueHuang 1,2,3,4, Shelby L. Johnson6, Jenny Lai 1,2,3,4,
Laura Isacco1,2,3,4,7,8, Ailsa M. Jeffries6, Michael B. Miller 1,2,3,4,7,8,9,
Michael A. Lodato1,2,3,4,6,7,8, Christopher A. Walsh 1,2,3,4,7,8 &
Eunjung Alice Lee 1,2,3,4

Replication errors and various genotoxins cause DNA double-strand breaks
(DSBs) where error-prone repair creates genomic mutations, most frequently
focal deletions, and defective repair may lead to neurodegeneration. Despite
its pathophysiological importance, the extent to which faulty DSB repair alters
the genome, and the mechanisms by which mutations arise, have not been
systematically examined reflecting ineffective methods. Here, we develop
PhaseDel, a computational method to detect focal deletions and characterize
underlying mechanisms in single-cell whole genome sequences (scWGS). We
analyzed high-coverage scWGS of 107 single neurons from 18 neurotypical
individuals of various ages, and found that somatic deletions increased with
age and in highly expressed genes in human brain. Our analysis of 50 single
neurons from DNA repair-deficient diseases with progressive neurodegen-
eration (Cockayne syndrome, Xeroderma pigmentosum, and Ataxia tel-
angiectasia) reveals elevated somatic deletions compared to age-matched
controls. Distinctive mechanistic signatures and transcriptional associations
suggest roles for somatic deletions in neurodegeneration.

DNA double-strand breaks (DSBs) are among the most damaging DNA
lesions, rapidly triggering DNA repair or apoptosis1,2. Dividing human
fibroblasts are known to accumulate ~50 DSBs per cell cycle3, and
common environmental sources such as ionizing radiation or ultra-
violet light continuously produce DSBs in human cells2. DSBs have
been implicated in not only playing an essential physiological role in
human neurons4, but also causing neurodegeneration when mis-
repaired5,6. Despite the significant pathophysiological implications of
DSB and its repair, the extent towhichDSBsoccur and themechanisms
by which they are repaired have not been systematically examined in

human neurons of aging and DSB repair-defective individuals mainly
due to a lack of effective means4–6.

To maintain homeostasis against hazardous DSBs, distinct DSB
repair mechanisms have evolved in different cellular contexts7. Many
DSB repair mechanisms require end processing of two DSBs to ligate
them, resulting in the modification or loss of the genomic sequences
around the breakpoints2,7. Thesegenomic changes createDSB-induced
structural variants (SVs) and may influence cellular functions. Homo-
logous recombination, a major error-free DSB repair activated during
cell replication cannot be utilized in fully differentiated and thus non-
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replicating post-mitotic neurons1. Thus, other error-prone DSB repair
mechanismsare likely to inducemoreSVs in post-mitotic neurons than
other cell types. Careful examination of SV breakpoints and their
sequence features is essential to understand the impact of SVs and
underlying mutational and DSB repair processes. However, most
related efforts have been made only in animal models with artificial
DSB induction8,9, and few studies havebeendonewith humanneurons.

Advances in single-cell genomics now provide a way to detect
various types of somatic mutations in human post-mitotic neurons.
Recent single-cell whole-genome sequencing (scWGS) studies have
reported the occurrence of hundreds to thousands of somatic single-
nucleotide variants (sSNVs)10–12, tens of megabase-scale somatic copy
number variants (CNVs)13–17, and less than one somatic L1 insertion in
eachneuron of neurotypical brains18–21. However, the analysis of single-
neuronal SVs, which are closely related to mis-repaired DSBs, has still
remained a challenge, due to the substantial SV-like chimeric artifacts
that hinder the detection of true SVs arising during whole-genome
amplification (WGA) of a single cell20,22. Thus far, studies on somatic
SVs in single neurons have only identified megabase-scale large dele-
tions and duplications13–17. These previous studies created shallow-
depth (<1×) scWGS data with read-depth-based analysis using large
genomic bins, which is not sensitive enough to detect focal events and
to determine exact breakpoints at single-base resolution13,14,16. For
high-coverage scWGS, there has been no adequate bioinformatic
method to distinguish true somatic SVs from prevalent artifacts.

In this study, we develop a computational method to detect focal
somatic deletions, the most common form of SV emerging from mis-
repairedDSBs, and characterize underlying DSB repairmechanisms by
analyzing deletion breakpoints at single-base resolution. We analyzed
107 single neurons from 18 neurotypical individuals of various ages to
assess the deletion accumulation with age and the contributions of
underlying repair mechanisms. An increase in somatic deletions was
identified with age and gene expression level, the latter occurring only
with a specific repair mechanism. To test the hypothesis that accu-
mulated DSBs are potentially implicated in contributing to neuronal
degenerations, we also analyzed 50 single neurons from patients with
three different neurodegenerative diseases with defective DNA repair
—ataxia telangiectasia (AT), Cockayne syndrome (CS), and xeroderma
pigmentosum (XP). AT is associatedwith defective DSB repair while CS
and XP are associated with defective nucleotide-excision repair (NER).
Our analysis reveals significant increases in somatic deletions not only
for AT but also for the two NER diseases, suggesting a potential com-
mon underlying mechanism contributing to neurodegeneration.

Results
PhaseDel detects somatic nanodeletions in single human
neurons
In scWGS data, uneven amplification and chimera formation during
WGA results in SV-like artifacts that render conventional SV detection
methods inapplicable as they are unable to discriminate genuine
deletions fromchimeric artifacts20,22. To accomplish the discrimination
of the two with high confidence, we developed a computational
method called PhaseDel. PhaseDel utilizes read-based linkage infor-
mation between deletion breakpoints and nearby germline hetero-
zygous single-nucleotide polymorphisms (SNPs) to delineate true
deletions (both somatic and germline) based on the phasing patterns
of spanning reads (Fig. 1a), a similar strategy adopted from our pre-
vious sSNV analysis10,12,23. PhaseDel utilizes two different and com-
plementary callers, GATK24 and DELLY225, to identify initial candidates
that are validated by phasing analysis, allowing us to discover a wide
range of deletions (Fig. 1b and Supplementary Fig. S1a).

We applied PhaseDel to a high-depth scWGS dataset (~45× on
average) from a total of 107 prefrontal cortex (PFC) neurons of 18
neurotypical control individuals obtained from previously published
studies10,12, in which the genomic DNA was amplified using multiple

displacement amplification (MDA). Figure 1c demonstrates one
exampleof our phased somatic deletion candidates showing depletion
of read depth and deletion-supporting reads perfectly linked with the
heterozygous SNP, which were observed only in the scWGS data and
not in the bulk WGS data from the cerebellum of the same individual.
We identified a total of 1751 somatic deletions (3 bp–100Kbp, mean
155 bp, median 4 bp) (Fig. 1d and Supplementary Fig. S1b, c). Most
somatic (96.2%) and germline (99.5%) deletions were smaller than
100bp, and somatic deletions were overall larger than germline
deletions (P = 2.2 × 10−16, two-sided Mann–Whitney U test; Fig. 1d and
Supplementary Fig. S1d). We call the deletions targeted in this study
nanodeletions as they were more than 1000 times smaller than
microdeletion of megabase ranges26.

We evaluated the sensitivity of our phasing method using
phaseable pairs of germline heterozygous SNPs and germline hetero-
zygous deletions. Unlike sSNV analysis, a high false negative rate (~30%
on average, Supplementary Fig. S1e) was obtained even for known
annotated deletions due to a small number of unphased reads caused
by mapping errors or mis-clipping. Therefore, we allowed one
unphased read to reduce false negatives, which despite increasing the
false discovery rate (FDR) achieved 85.5% sensitivity per cell, on aver-
age (Fig. 1e).

Since phasing analysis can only be applied to ~25% of all deletion
candidates that are close enough to germline SNPs (Supplementary
Fig. S1f), extrapolation is required to estimate the genome-wide
somatic deletion rate. We developed an estimation process based on a
two-component model: true mutations and errors. This enabled not
only extrapolating the genome-wide rate but also controlling the FDR
at a similar level (<10%) by estimating the error rate per cell (Supple-
mentary Fig. S1g). On average, we obtained 174.7 (±102.9 SD) somatic
deletions per cell genome-wide from 107 single neurons from control
individuals, estimated from an average of 16.4 (±13.6 SD) phased
deletions per cell. An overview of the PhaseDel workflow is shown in
Supplementary Fig. S2a.

Evaluation of PhaseDel accuracy and validation using ultra-deep
amplicon sequencing
It is difficult to assess the accuracy of PhaseDel using regular scWGS
data since most somatic deletions are single-cell-specific, and it is
impossible to obtain independent, not amplified DNA from the same
single cell for validation. To overcome this challenge, we tested Pha-
seDel on published genome sequencing data of single-fibroblast-
derived clones27, consisting of two MDA-amplified-scWGS datasets
from singlefibroblasts (IL-11 and -12) andunamplified bulkWGSdata of
their kindred clone (IL-1c) (Supplementary Fig. S3a). Since all three
WGS datasets are expected to share somatic mutations originating
from the seed single fibroblast (Supplementary Fig. S3a, red star), we
assessed the accuracy of PhaseDel by checking if each phased deletion
candidate from the scWGS data was observed in the bulk WGS data of
the kindred clone (see Methods). A total of 43/46 (93.5%) and 18/19
(94.7%) scWGS-derived PhaseDel deletions were confirmed in the bulk
clone data (Supplementary Fig. S3b).We also evaluated if the genome-
wide deletion count estimated by PhaseDel from the scWGS is com-
parable to the actual deletion count from the bulk clone data. Through
multiple steps of conservative filtering (Supplementary Fig. S3c, see
Methods), we obtained 452 somatic deletion candidates from the
kindred bulk WGS data, which was comparable to the PhaseDel-
estimated rates of 468.66 and 407.25 somatic deletions per fibroblast
from the scWGS data (Supplementary Fig. S3d).

Next, we experimentally validated somatic deletion candidates
from our single-neuronWGS data by designing custom amplicons that
covered deletion breakpoints to directly capture the sequences
spanning breakpoints. Out of 2585 high-confidence somatic deletion
candidates from 107 normal and 50 disease neurons, we randomly
selected a total of 244 deletions across all individuals andmechanisms
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(Fig. 2a, see Methods). Genomes from four different sources (MDA-
amplified DNA from the called cell and from an uncalled negative
control cell, bulk PFC DNA and bulk non-brain DNA from the same
individual) were amplified and indexed, then pooled and sequenced
together with an average depth over 50,000×. With this amplicon
sequencing, we validated 209/244 (85.7%) identified breakpoints from
theMDA-amplified DNA of the single cells (Supplementary Fig. S4a, b).
We failed to validate 35 candidates, including five with deletion-
supporting reads in the negative control. For the remaining 30 failed
candidates, we did not obtain any breakpoint-supporting reads from
MDA-amplified DNA, and they did not show any differences in
sequencing features compared to the validated ones, such as deletion
types, supporting read count, genomic context, and homology
sequence length. They are likely due to the discrepant sampling of
deletion-supporting reads between the scWGS and amplicon sequen-
cing data. Validation rates varied among individuals rather than dis-
ease status (Supplementary Fig. S4a, b).

Conservatively, this validation approach might not be able to
distinguish single-cell-specific somatic deletions from chimeric arti-
facts that formed very early during MDA, but the validity of true
somatic deletions could be further supported if the same events are
clonally observed from amplicon sequencing reads of unamplified
bulk DNA from the same donor. We found two ultra-low-level mosaic
deletions that were supported by the bulk reads, which showed the
exact same breakpoints as in the single cells (Fig. 2b, c). The first
deletion was a short 45 bp deletion with supporting reads from the
bulk PFC (0.3% variant allele frequency; VAF) and the bulk cerebellum
DNA (0.5% VAF), initially detected by GATK (Fig. 2b). The other dele-
tion was a DELLY-derived 160bp deletion with supporting reads from

the bulk PFC (0.1% VAF) and absent in the bulk kidney DNA. Unlike the
first deletion, this second deletion reflected a 7-bp microhomology
between the two breakpoints, representing different underlying DSB
repair mechanisms between the two mosaic deletions (Fig. 2c).

Somatic nanodeletions increase with age and reflect distinctive
underlying repair mechanisms
Genomic context, such as the length of sequence homology, at the
deletion breakpoints provides fundamental information about the
underlying mechanisms generating the deletion28–31. In PhaseDel, we
implemented a module to predict which of six different mutational
mechanismswasmost likely to generate a candidate nanodeletion (see
Methods), following criteria in a previous cancer genome study31. We
applied the module to the somatic and germline deletion calls from
107 single neurons of normal individuals. In germline deletions, we
observed contributions from underlying mechanisms similar to those
identified in the previous work for the same size deletions (>100bp),
including major contributions from transposable element insertions
(TEIs)31,32. This confirmed the validity of our developedmodule (Fig. 3a,
upper left).

By contrast, somatic deletions in the same size range (>100bp) in
single human neurons revealed the contribution of mechanisms dis-
tinct from somatic deletions in cancer genomes (Fig. 3a, upper right).
The major difference was the absence of contribution of fork stalling
and template switching (FoSTeS), which accounted for ~20% of
somatic deletions in the previous cancer study31. During DNA replica-
tion, the replication at the fork can stall and DNA polymerase can
switch the template via microhomology of nearby single-stranded
DNA, creating complex SVs33. The lack of deletions from the FoSTeS
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mechanism can be explained by the fact that our call sets were from
non-replicating single mature neurons. In the set of all somatic dele-
tions, non-homologous end-joining (NHEJ) and microhomology-
mediated end-joining (MMEJ, also known as alternative end-joining)
were the dominant mechanisms, accounting for 57.6% and 21.4% of
totaldeletions, respectively (Fig. 3a, lower).MostNHEJ-baseddeletions
were <20bp, whereas MMEJ-based deletions showed a wider size
range with an average of 9.5 bp microhomology shared at the break-
points (Fig. 3b). To determine whether the observed dominance of
NHEJ- and MMEJ-based deletions was due to variable performance of
PhaseDel across different mechanisms, we examined the fraction of
deletion candidates from each mechanism that were filtered out
through the linkage analysis, a critical step in PhaseDel (Supplemen-
tary Fig. S4c–e). All mechanisms except for MMEJ and nonallelic
homologous recombination (NAHR) demonstrated similar fractions of
filtered events (Supplementary Fig. S4d). Sequence homology
between the two breakpoints in MMEJ- and NAHR-based deletion
candidates increases the chance of chimeric artifact formation during
in vitro genome amplification likely resulting in the higher fractions of
false positives filtered by the linkage analysis. Therefore, NHEJ- and
MMEJ-dominance in our call set likely reflects the major mechanisms
underlying somatic deletions in post-mitotic human neurons.

Post-mitotic neurons accumulate somatic SNVs with age, termed
genosenium10. PhaseDel estimated the genome-wide rates of somatic
nanodeletions and revealed a consistent accumulation with age

(P = 2.0 × 10−8, linear regression; Fig. 3c, left). Nanodeletions accumu-
lated at a rate of 1.7 per year, ~7.5% of the reported rate for sSNVs
(22.6 sSNVs per year)10. Our observation of increasing deletion burden
with age contrasts with a recent report of the negative correlation
between age and theprevalenceofneuronswith larger somaticCNVs14;
this inconsistency could be explained by the size difference of tar-
geting variants (megabase-scale events in the previous study), exerting
different selective pressure for cell survival. Somatic deletions were
enriched in genes involved in neuronal function after accounting for
their size (Supplementary Fig. S5), demonstrating similar enrichment
as neuronal sSNVs10,11. We separately estimated the burden of NHEJ-
and MMEJ-based deletions, and both types of deletions significantly
increased with age (P = 3.56 × 10−5 and P = 3.16 × 10−4, respectively, lin-
ear regression; Fig. 3c). Overall, NHEJ-based deletions showed a two-
fold greater rate of accumulation compared to MMEJ-based deletions
(0.86 and 0.44 per year, respectively), although the contribution ratio
between NHEJ and MMEJ was highly variable across the cells.

In post-mitotic single neurons, genes highly expressed in thebrain
showed an increased burden of sSNVs, suggesting an increase of
transcription-coupled DNA damage10,11. Similar to sSNVs, somatic
nanodeletions showed significant enrichment in highly expressed
brain genes (see Methods), but only for NHEJ-based deletions, not for
MMEJ deletions (empirical P =0.004 and P =0.14, respectively;
Fig. 3d).We postulated that the burden of NHEJ-based deletions would
increase with gene expression levels, and tested this bymeasuring the
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burden per quartile of gene expression level in normal PFC (see
Methods). This analysis confirmed a positive correlation between
deletion burden and gene expression, again only for NHEJ but not
MMEJ, suggesting that NHEJ is the predominant mechanism to repair
transcription-induced DSBs in human neurons (Fig. 3e).

Somatic nanodeletions increase with distinctive patterns in
neurons of individuals with DNA repair defects
Defective DNA repair caused by inherited mutations can lead to con-
genital neurodegenerative diseases2,5,6. AT is a rare genetic disease
characterized by progressive neurodegeneration, cancer predisposi-
tion, and premature aging caused by recessive mutations in the ataxia
telangiectasiamutated (ATM) gene34,35. ATM is a key protein kinase that
transmits a DSB damage signal to cell-cycle-checkpoint proteins such
as p53 and CHK2, arresting cell cycles for DSB resolution or triggering
DSB-induced apoptosis36,37 (Fig. 4a). ATM deficiency in AT has been
thought to result in accumulation of DNA-damaged neurons, which
may lead to cell loss and further neurodegeneration38. Although a high
predisposition to cancer—predominantly leukemia and
lymphoma35,39—and a high prevalence of chromothripsis in tumors of
patients with AT40,41 have been reported, direct assessment of DSB
accumulation in human single neurons of AT patients has not yet been
explored. Therefore, we generatedMDA-basedhigh-depth scWGSdata
(~45×) for 11 PFC neurons from two AT patients in this study.

AT single neurons demonstrated an excess of somatic nanodele-
tions compared to the neurons of age-matched normal controls
(P = 4.6 × 10−3, two-sided Mann–Whitney U test; Fig. 4b). The average
estimated burden in single neurons of 19- and 24-year-old AT patients
(185.6 per neuron) was at a similar level to the 51-year-old neurons in
the control PFC, suggesting accelerated accumulation of DSB events in
AT. Note that the sSNV rates estimated with LiRA, a similar phasing
method for sSNV23, showed no difference between neurons of AT and
normal controls (Supplementary Fig. S6a), suggesting the role of ATM
loss specific to DSB-induced deletions but not to sSNVs. The increase
in somatic nanodeletions in AT was almost completely derived from
NHEJ (P = 9.35 × 10−3, two-sided Mann–Whitney U test; Fig. 4b), con-
sistent with previous reports of the enhanced NHEJ burden in ATM-
deficient replicating cells42,43.

We have previously shown an increase in somatic SNVs in two
genetic diseases with early-onset neurodegeneration and premature
aging—CS and XP, both resulting from defective NER10. A recent
comprehensive study of genotoxic exposures and DNA repair defi-
ciencies in Caenorhabditis elegans found that defective NER not only
results in an increase in sSNVs but also increases indels and SVs,
especially deletions of 50–400bp44. We thus examined somatic
nanodeletion accumulation in CS and XP using previously published
high-depth (~45×) MDA scWGS dataset of 26 and 13 PFC neurons of CS
and XP patients, respectively10.

c

Mechanism
NHEJ (MH=0)
MH=1
MH=2
MH=3
MMEJ (MH≥4)
VNTR
NAHR
FoSTeS
TEI

a
M

ec
ha

ni
sm

 fr
ac

tio
n

M
ec

ha
ni

sm
 fr

ac
tio

n

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00
Germline deletion (>100bp) Somatic deletion (>100bp)

Total somatic deletion

Individual Single neuron

Single neuron

sD
el

s 
/ n

eu
ro

n

0

200

400

600

Region

MMEJ
NHEJ

DelType

ex
on

ic

int
ron

ic
ge

nic

int
erg

en
ic

b

0.0

0.5

1.0

1.5

bra
inH

igh
Exp

(to
p 1

0%
)

O
bs

/E
xp

 ra
tio

P=0.004

e

0.0

0.1

0.2

0.3

H
it/

M
b

Q1 Q2 Q3 Q4

MMEJ
NHEJ

DelType

d

0

1

2

0 1 2 3 4
Del size (log10)

D
en

si
ty

MMEJ
NHEJ

DelType

Expression quantilelow high

0.4
sD

el
s 

/ n
eu

ro
n

Age (years)

0

200

400

600

0 25 50 75 100

sD
el

s 
/ n

eu
ro

n

0

100

200

300

Age (years)
0 25 50 75 100

sD
el

s 
/ n

eu
ro

n

0

100

200

Age (years)
0 25 50 75 100

Adolescent
Adult
Aged

Age group
Infant

Total somatic deletion Somatic NHEJ deletion Somatic MMEJ deletion

400

Fig. 3 | Somatic nanodeletions in single-neurons increase with age and reflect
distinctive underlying repair mechanisms. a Contributions of the predicted
mechanisms to deletion formation: germline deletions (>100 bp) per individual
(upper left, 18 individuals), somatic deletions (>100bp) per cell (upper right,
31 cells), and total somatic deletions per cell (lower, 107 cells). Individuals and
single neurons are presented in order of age and deletion rate within each indivi-
dual. Single cells with all deletions <100 bp are omitted in the upper right panel.
Detailed criteria for mechanism prediction are described in Methods. MH micro-
homology. b The size of NHEJ- and MMEJ-based somatic deletions. c Somatic

deletion counts by age with linear regression lines. Each point represents a single
neuron. Total (left), NHEJ-based (MH=0, middle), and MMEJ-based (MH ≥ 4, right)
somatic deletions all showed a significant increase with age (P = 3.3 × 10−6,
4.78 × 10−5, 1.44 × 10−3; linear mixed model). d Enrichment of somatic deletions in
different genomic regions. Y axis represents the ratioof somaticdeletion counts for
each category to expected counts from simulation. n = 1000 independently simu-
lated sets; bar graph, mean ± 95% CI; empirical P =0.004. e Somatic deletion bur-
den by gene expression quantile in normal PFC. n = 1000 bootstrap deletion sets;
mean ± SEM. Source data are provided as a Source Data file.

Article https://doi.org/10.1038/s41467-022-33642-w

Nature Communications |         (2022) 13:5918 5



We observed a considerable increase in somatic nanodeletions in
CS neurons compared to age-matched controls (P =0.038, two-sided
Mann–Whitney U test; Fig. 4c), but only for NHEJ-based deletions
(P = 0.048, two-sided Mann–Whitney U test). DNA repair defects in CS
specifically involve transcription-coupled NER (TC-NER) (Fig. 4a), and
we observed that NHEJ was the predominant pathway involved in
repairing transcription-induced DSBs in neurons (Fig. 3e). Comparison
of somatic nanodeletion rates to gene expression data from normal
and CS-patient iPSC-derived neural stem cells (NSCs)45 (see Methods)
also revealed consistent results. The rates of NHEJ-based but not
MMEJ-based nanodeletions from CS PFC neurons increased with gene
expression in iPSC-NSCs fromCS patients (Fig. 4d, solid lines), but not
with gene expression in iPSC-NSCs from control individuals (Fig. 4d,
dashed lines). In line with this, we found no relationship between the
NHEJ burden inCSPFCneurons andgene expression in the normal PFC
(Supplementary Fig. S6b).

Therewas a significant increase in the deletionburden inXP single
neurons compared to age-matched normal controls (P = 5.06 × 10−5,
two-sided Mann–Whitney U test; Fig. 4e). There are eight XP com-
plementation groups according to mutated gene, and all but one of
these fit into two major subgroups: one group (XPC/E) adversely
affects only global genomic NER (GG-NER); the other group (XPA/B/D/
F/G) adversely affects both TC- andGG-NERby disrupted repair factors
that are commonly used for both downstream pathways2,6 (Fig. 4a).
Our XP samples are from the subgroup that affects both NER pathways
(XPA/D); we expected the NERdefects to be causative and therefore to
observe a deletion burden caused by both NER defects. Notably, in XP
neurons, there was a significant increase in deletions not only for NHEJ
(P = 1.02 × 10−3, two-sided Mann–Whitney U test) but also for MMEJ
(P = 8.17 × 10−3, two-sided Mann–Whitney U test), the latter suggesting
a specific burden from defective GG-NER since CS neurons with only
defective TC-NER did not show an increasing burden of MMEJ dele-
tions (Fig. 4e). Despite the significant enrichment of MMEJ-based
deletions, the overall increase in deletions in XP neurons was mainly
derived from NHEJ deletions (~6.4-fold higher burden). This suggests

that defective TC-NER is a major contributor of deletions detected in
the XP single neurons.

Discussion
Recent scWGS analyses have successfully characterized somatic
mutations in single cells, but have been limited to SNVs, transposable
elements (TEs), and large CNVs10–14,16,20,21,23,46. In this study, we devel-
oped PhaseDel, a method that utilizes phasing information to deline-
ate true somatic deletions from SV-like artifacts in scWGS data. We
identified and validated somatic nanodeletions, focal deletions gen-
erally <1 kb in size, from whole-genome-amplified single-cell sequen-
cing data. PhaseDel will also be useful for the detection of germline
deletions, for example, those in complex regions such as human leu-
kocyte antigen loci as the linkage between deletion-supporting reads
and other adjacent germline variants will help reduce false positive
predictions.

Our analysis of single post-mitotic neurons using PhaseDel
revealed the accumulation of somatic nanodeletions with age, in line
with previous reports of somatic SNV accumulation10,12,47. The accu-
mulation rate of somatic nanodeletions was 13-fold less than that of
sSNVs, and notably, the estimated rate of deletions per cell from any
particular individual varied more than did the rate of sSNVs10 (Sup-
plementary Fig. S6d). The higher variability in rates of somatic dele-
tions compared to sSNVsmay reflect differences in selective pressures,
since deletions aremore likely to be damaging than SNVs by involving
multiple bases and potentially causing frameshifts. Consistently, a
recent study reported a negative correlation between age and the
prevalence of neuronswith somaticCNVs,whicharemegabase-scale in
size and thus exert much stronger selective pressure14. In that study,
while they observed anti-correlation between age and the fraction of
neurons harboring CNVs, they also observed a higher average number
of somatic CNVs in CNV-harboring-neurons from aged groups, likely
supporting both the accumulation of CNVs and the increased selective
pressure with age. The study also suggested that gene transcription is
the main cause of neuronal CNVs by showing the significant
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enrichment of somatic CNVs in long genes that are highly expressed
and involved in neuronal functions48–50. These common findings
between the previous study and our analyses further support the
shared origin of different-sized deletions and their variable selective
pressure.

Our analysis revealed an increased burden of somatic deletions in
genes with high levels of expression, especially for NHEJ-based dele-
tions. Transcriptional DSBs have been reported in post-mitotic
neurons51,52, but more investigation is needed to determine why
there is a positive correlation between NHEJ-based deletions and gene
expression levels, but not for MMEJ-based deletions. One possible
explanation is that transcription involves multiprotein complexes
containing NHEJ proteins and RNA polymerase II (RNAP II), resulting in
enhanced recruitment of NHEJ proteins to highly transcribed genes53.
For nascent RNA-templated DSB repair in post-mitotic neurons, mul-
tiprotein complexes with both RNAP II and DSB repair proteins have
been reported to be preferentially accumulated at DSB sites of tran-
scribed genes53,54. We speculate that the recruited NHEJ proteins are
not only involved in RNA-mediated repair but also involved in classical
NHEJ repair, resulting in an increased NHEJ efficiency. The absence of
MMEJ proteins within the RNAP II complex further supports this
possibility53.

Researchers have long suspected that inactive ATM in AT neurons
would result in the accumulation of somatic deletions derived from
unrepaired DSBs, but no detection methodology for single-neuron
WGS has been available to test this hypothesis. Our analysis using
PhaseDel has confirmed this long-standing hypothesis. An increase in
somatic deletions was also observed in two additional genetic dis-
eases, CS and XP, that involve defective NER rather than defective DSB
repair. Not all but many CS and XP cases present with neurodegen-
erative phenotypes similar to AT. For example, XP patients with inac-
tivation of the XPG gene showed a loss of cerebellar Purkinje cells55,
and mice with dual inactivation of CSB and XPA genes demonstrated
cerebellar atrophy with granule cell loss56. Since DSB accumulation is a
direct cause of cell apoptosis or cell death, we propose that the
accumulation of DSBsmay contribute to neurodegeneration in CS and
XP. We observed that the majority of increased DSBs in CS and XP
neurons were derived from defective TC-NER, not from defective GG-
NER. Consistently, XP patients without defective TC-NER are known to
have little neurological impairment6,57. Taken together, DSB accumu-
lation may serve as a common underlying mechanism of
neurodegeneration.

Although our method can estimate a genome-wide deletion bur-
den, it can directly detect events only in ~25%of the genomedue to the
requirement of nearbygermline heterozygous SNPs. Thus, our analysis
has limitation in characterizing the enrichment of deletions particu-
larly in small genomic regions. For example, a previous study reported
neuronal-activity-induced DSBs within the promoters of a few early-
response genes4, but these extremely small promoter regions were
largely under-powered in our phasing analysis. Future improvements
in genome amplification and the application of long-read sequencing
will greatly improve PhaseDel’s power, allowing further insights into
the implications of DSBs in human neurons.

Methods
Human data and specimens
scWGS data for 107, 26, and 13 PFC single neurons, from post-mortem
brain tissueof 18 neurotypical individuals, sixCS, and threeXPpatients
respectively, were obtained from previously published work10–12.
Additional scWGS data for 11 PFC single neurons from two individuals
with AT were generated. Post-mortem brain tissue was obtained from
two female patients with AT, ages 19 and 24 years, from the NIH
Neurobiobank. These samples were collected and processed accord-
ing to a standardized protocol (Protocol Method 2, https://www.
medschool.umaryland.edu/btbank/Researchers/Tissues-Collected/)

and under the supervision and approval of the NIH Neurobiobank and
the Boston Children’s Hospital institutional review board. Descriptive
details of all individuals, such as age, sex, clinical status, and number of
cells, are available in Supplementary Table S1.

Single-cell isolation and sequencing
Bulk DNA was extracted using the buffer ATL from QIAamp DNA Mini
kit and proteinase K digestion. The isolation of single nuclei using flow
cytometry after staining for the pan-neuronalmarker, NeuN (Millipore
MAB337X), and their WGA using MDA were described previously10–12.
Briefly, nuclei were prepared from fresh frozen human brain tissue
samples, previously stored at −80 °C, in aDouncehomogenizer using a
chilled nuclear lysis buffer (10mM Tris-HCl, 0.32M Sucrose, 3mM
Mg(Acetate)2, 5mM CaCl2, 0.1mM EDTA, pH 8, 1mMDTT, 0.1% Triton
X-100) on ice. Tissue lysates were layered on top of a sucrose cushion
buffer (1.8M Sucrose, 3mMMg(Acetate)2, 10mMTris-HCl, pH 8, 1mM
DTT) and ultra-centrifuged for 1–2 h at 30,000G. Supernatant was
discarded and nuclear pellets were resuspended in ice-cold PBS sup-
plemented with 3mM MgCl2, filtered, then stained with an anti-NeuN
antibody in PBS supplemented with 3mM MgCl2 and 3% BSA (Milli-
pore,MAB377X, clone A60, AlexaFluor-488 conjugated, 1:1250). Nuclei
were then sorted by flow cytometry, one nucleus per well into 96-well
plates with each well containing 2.8 µl alkaline nuclear lysis buffer
(200mMKOH, 5mMEDTA, 40mMDTT)prechilled on ice. Nucleiwere
lysed on ice for 15–30min, and then neutralized on ice in 1.4 µl neu-
tralization buffer (400mMHCl, 600mMTris-HCl, pH 7.5). Then, MDA
was performed. New AT samples were MDA amplified using the fol-
lowing protocol. 2 µl 10× Phi29 reaction buffer (Epicentre), 8.4 µl
nuclease-free water, 4 µl 10mM dNTP, 1 µl 1mM random hexamer (5’
dNdNdNdN*dN*dN-3’ [where * is thiophosphate linkage]) (IDT or
ThermoFisher), 0.4 µl repliPHI polymerase (40U) (Epicentre)) was
added to each well. MDA was performed at 30 °C for 16 h then Phi29
was inactivated at 65 °C for 3min. Supplementary Table S1 lists which
samples were subject to Epicentre or Qiagen MDA.

Amplified single-cell genomes were subjected to quality control
by DNA quantitation (picogreen, 3μg yield required) and multiplex
PCR for four random genomic loci. For germline reference, bulk DNA
was purified using phenol:chloroform:isoamyl alcohol extraction and
isopropanol precipitation, without RNAse A treatment. Amplified
single-neuron genomes were prepared for sequencing by DNA shear-
ing and libraries generated by Psomagen (Macrogen) using Illumina
TruSeq kits and Illumina HiSeq X10 paired-end sequencing (150bp ×
2), as described previously10.

Read mapping and quality-control analysis
Sequenced reads were aligned to the human reference genome
(GRCh37) using BWA-mem (version 0.7.17)58 with default parameter
settings. For each mapped BAM file, duplicated reads were marked
using Picard (version 2.8.0), and indel realignment and base-quality
recalibration were performed using the Genome Analysis Toolkit
(GATK, version 3.5)59.

As a quality control, we checked the evenness of WGA to exclude
cells with failed amplification. Specifically, for each BAM file, the
evenness of genome amplification was measured using the median
absolute pairwise difference (MAPD) metric as previously reported13.
The MAPDmetric was calculated by taking the median value across all
absolute differences between the copy number ratio of neighboring
bins, which were divided to have the same number of uniquely map-
ped reads. Previous single-cell copy number analysis protocol60 was
applied to calculate MAPD values, including binning, GC normal-
ization, segmentation, and copy number estimation. Single cells with
MAPD> 2 were considered to result from failed WGA and excluded
from the downstream analysis. Fifteen single cells that failed to esti-
mate the deletion rate using PhaseDelwere also excluded (see deletion
rate estimation section below). scWGS data from a total of 107 and 50
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PFC single-neurons from 18 normal individuals and 11 neurodegen-
erative disease patients were finally included in the study. Detailed
sample information is described in Supplementary Table S1.

Variant calling for linkage analysis
Germline heterozygous SNPs were identified from bulk sequencing
data by GATK with default parameter settings. To include only high-
confidence germline heterozygous SNPs for linkage analysis, we
selected and used only the heterozygous SNPs (0/1 genotype) that
were annotated as known SNPs in the dbSNP database (version 147)61.
In a similar way, germline heterozygous deletions were identified from
bulk sequencing data by GATK and DELLY225 with the default para-
meter settings. We selected putative germline heterozygous deletions
(0/1 genotype from either GATK or DELLY2) if >90% of a deletion
region overlapped with >90% of a known polymorphic deletion region
in the dbSNP (version 147) or 1000 Genomes Phase 3 SV database
(estd219)62, allowing up to a 2- or 10-bp difference in deletion break-
points for GATK and DELLY2 calls, respectively. Pairs consisting of a
germline heterozygous SNP and a germline heterozygous deletion that
were linked by at least two spanning reads (deletion-supporting clip-
ped/discordant reads crossing the SNP site) were utilized as an answer
set tomeasure the sensitivity of the PhaseDel algorithmwith single-cell
sequencing data.

Variant calling of initial somatic deletion candidates was per-
formed by GATK and DELLY2 for single-cell sequencing data, just as
was done for germline deletions. Called deletion candidates that were
linked to germline heterozygous SNPswith at least two spanning reads
(called phaseable candidates) were subjected to linkage analysis to
further clarify whether they were true somatic deletions or chimeric
artifacts occurring during single-cell WGA. All phaseable candidates
were analyzed using linkage analysis including low-quality calls with
low variant scores or filtered calls annotated with FILTER tags from
GATK/DELLY outputs tomaximize sensitivity. Initial phaseable call sets
from GATK and DELLY were merged to make an integrated call set for
every single cell. Deletions with call sets in both callers with an overlap
of >90%wereconsidered tobe the samedeletion and thusmerged into
a single event.

Linkage analysis to detect somatic deletions
Each phaseable deletion candidate was reanalyzed to refine the exact
position of the deletion breakpoint linked to the germline hetero-
zygous SNP. Shared clipped positions of deletion-supporting reads
were used as predicted breakpoints for linkage analysis, and the con-
sensus sequence for the clipped-out part was constructed for each
position based on reads with the majority of clipped subsequences.
Phaseable reads (i.e., reads spanning the deletion breakpoint and the
germline heterozygous SNP site) were then tagged as deletion-
supporting or non-supporting reads for further linkage analysis. A
given phaseable read was considered to be deletion-supporting if one
of the following conditions is satisfied: (1) read clipping occurred
within 3 bp of the predicted breakpoint and the clipped-out part
matched the consensus sequence for the given breakpoint with >70%
concordance, (2) read clipping did not occur and the read sub-
sequence beyond the predicted breakpoint failed to match the refer-
ence sequence but rathermatched the consensus sequence with >70%
concordance, or (3) it was a discordant read (insert size >
mean+ 3 standard deviation of insert size for a given cell) and a given
read and its mate in the pair were both mapped on opposite ends
outside of the predicted deletion region.

For each phaseable heterozygous SNP site, the number of dele-
tion-supporting/non-supporting reads was counted for each SNP
allele. The allele with the larger number of deletion-supporting reads
was designated to represent the deletion-containing haplotype. A
given deletion was considered to be a false positive WGA artifact if (1)
more than one of the phaseable reads with the deletion-supporting

SNP allele were non-supporting reads or (2) at least one of the
phaseable reads with the non-supporting SNP allele was a deletion-
supporting read. When a given deletion candidate was linked to mul-
tiple heterozygous SNPs, it was filtered out as a false positive if any
single SNP satisfied one of those two criteria. Additional filtering steps
were also applied to remove more false positives based on the pre-
viously reported characteristics of WGA artifacts22. Candidates were
filtered out if (1) >40% of phaseable deletion-supporting reads were
inverted (F1F2 or R1R2) since inverted amplification is a major char-
acteristic of a chimeric artifact22, or (2) an average of the minor allele
frequency (MAF) for all germline heterozygous SNPs locatedwithin the
deleted regions was >10% since the MAF is theoretically zero for the
SNPs within true somatic deletion regions identified in single-cell
sequencing data.

True somatic and germline deletions can both survive the linkage
analysis and additional filtering steps. To classify germline deletions,
phased deletion regions were analyzed from bulk sequencing data
from the same individual. A given candidate was classified as a germ-
line deletion if the matched bulk data had deletion-supporting reads
and if they were properly phased with the deletion-supporting SNP
allele (with up to one non-supporting read along with the deletion-
supporting allele) for all phaseable deletion breakpoints. Sensitivity
was measured by comparing these phased germline deletions to the
answer set for benchmarking. For remaining phased deletions, possi-
ble germline candidates were additionally filtered out if (1) there were
no phaseable reads spanning the deletion-supporting SNP allele and
the breakpoint in the bulk data, making it impossible to determine
whether it was a germline deletion, or if (2) among the reads with the
deletion-supporting SNP allele in the bulk data, the fraction of
deletion-supporting reads was too high (>80%). Candidates that sur-
vived this filtering step were considered to be final somatic deletion
candidates.

Measuring sensitivity of PhaseDel
Putative germline heterozygous deletions annotated as known poly-
morphic deletions by public databases served as a gold-standard
answer set. A given gold-standard germline deletion can be missed by
PhaseDel from scWGS data if (1) there is no nearby germline hetero-
zygous SNP, making linkage analysis inapplicable, (2) genomic regions
around the deletion are not covered in scWGS data due to allelic/locus
dropout during theWGAprocess, or (3) the variantwasmissed/filtered
out by PhaseDel (false negative). In order to examine the performance
of PhaseDel, which is only in play in the third condition, we examined
each cell and divided the number of identified gold-standard germline
deletions by the total number of phaseable gold-standard germline
deletions, that is, deletions with at least two spanning reads in a given
scWGS data, to which linkage analysis applicable. All calculated frac-
tions were averaged and shown with a 95% confidence interval in
Fig. 1e. To determine the fraction of total deletions expected to be
identified by PhaseDel, we further calculated the number of identified
deletions over the total gold-standard germline deletions including in
non-phaseable regions in a given cell (Supplementary Fig. S1f). The
total number of gold-standard germline deletions, the number of
phaseable and identified deletions by PhaseDel, and all measured
fractions for each cell are described in Supplementary Data 1.

Estimation of somatic deletion rate
PhaseDel can only detect somatic deletions that are close to germline
SNPs (covering ~25% of the entire genome, Supplementary Fig. S1f);
therefore, extrapolation is required to estimate the genome-wide
somatic deletion rate. In addition, although final somatic candidates
were phased and filtered to remove false positives, such false calls
might still have remained if the candidate region was under-powered
due to uneven amplification or locus/allelic dropout, in which case the
region with low read depth would have been more likely to have a
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random phased false call or to have just one linkage-violating read. To
accurately estimate the genome-wide rate while controlling false
positives, we developed a two-component model that separately
estimates underlying rates of true somatic deletions and false positive
errors for sequencing data for a given single cell, which is a strategy
similar to that adopted in our previous somatic SNV analysis23.

The main idea was to analyze all phased candidates, categorize
them according to the number of candidate-supporting linked-read
count, calculate the rate atwhich candidateswith the same linked-read
count occurred compared to all genomic positions with that linked-
read count, and then separate them into the rate for true somatic
deletions and for errors based on expected differences in the rate of
each (Supplementary Fig. S1g). For true somatic deletions,we assumed
there to be no difference in the expected rate of true deletions
according to their deletion-supporting linked-read counts, since
amplification bias randomly affects the entire genome, and thus there
is no reason to expect a higher rate of somatic deletion with certain
supporting read counts. However, for false positive errors, we
assumed that higher supporting read counts would yield fewer errors,
that is, regions with higher read-depth are less likely to have random
errors that are perfectly linked (phased) or with just one linkage-
violating read. Therefore, the rate of all phased candidates (T(c)) with
supporting read counts (c) was considered to be a mixture of a con-
stant and a decaying function, representing the rates of true somatic
deletions (S(c)) and false positives (E(c)), respectively (Supplementary
Fig. S1g).

TðcÞ= SðcÞ+ EðcÞ= k1 + k2e
�k3ðc�2Þ; c≥ 2,k1 ≥0,k2 ≥0,k3 ≥0 ð1Þ

The exponential decay model was selected to fit the decaying
function for the rate of errors based on the measured pattern of the
rate of all phased candidates for each supporting linked-read count
(Supplementary Fig. S1g). At least two phaseable reads were required
for linkage analysis, so the minimum count for supporting reads was
set to two (c≥2). Parameters k1, k2, and k3 were estimated by Bayesian
inference using the Markov chain Monte Carlo (MCMC) sampling,
conducted using the R package rstan. Four MCMC chains were used,
each with 5000 burn-in steps followed by 10,000 iterations.

For a given supporting read count (c’), the total rate (T(c’)) was
calculated as the number of candidates with c’ supporting reads divi-
ded by the total number of positions covered by c’ phaseable (linked)
reads. For all phaseable positions in a given cell, we counted the
number of positions per phaseable read count to calculate the rate for
each supporting read count. When a given position was linked to
multiple germline heterozygous SNPs and thus hadmultiple phaseable
read counts, then the highest read count was assigned as the repre-
sentative count for the given position. Calculated rates across all
phaseable read counts (black dots, Supplementary Fig. S1g) were used
to fit the mixture model of two components, true somatic deletions,
and errors (blue horizontal line and orange curve, Supplementary Fig.
S1g), as described above. The posterior mean and 95% confidence
interval of k1were reported as an estimated somatic deletion rate for a
given cell. If the model failed to converge or estimated parameters
violated the constraints for a given cell (e.g., the rate for all phased
candidates did not decay as supporting read counts increased, but
rather that rate increased due to severe amplification bias), then it was
considered to be a cell with excessive amplification errors and was
excluded from the study. A total of 157 single cells were used in
downstream analyses after excluding 15 single cells (13, 1, and 1 from
normal, CS, and XP cells, respectively) with failed estimation.

Based on the fitted two-component model, the FDR for a given
supporting read count (c’) was estimated as follows: FDR(c’) = E(c’) /
T(c’). Utilizing this FDR estimation, PhaseDel constructed high-
confidence candidate sets that were controlled to have a similar FDR
(<10%) across all cells by setting a cell-specific supporting read count

threshold.With the read count threshold (ct), the aggregated FDR for a
given cell was calculated as follows:

FDRaggrðctÞ=
P

c≥ ct
EðcÞ

P
c ≥ ct

TðcÞ ð2Þ

For each cell, the minimum threshold (ct_min) to satisfy FDRaggr<0.1
was determined and a high-confidence somatic deletion set was
constructed by selecting phased deletion candidates with supporting
read counts ≥ct_min. These FDR-controlled high-confidence sets were
used for the entire analysis in this study. Estimated somatic mutation
rates, supporting read count thresholds, and the number of selected
high-confidence somatic deletions for each cell are described in
Supplementary Data 1.

Evaluation of PhaseDel accuracy using the published kindred
clone WGS data
Previously published genome sequencing data of single-fibroblast-
derived clones27 were used to assess the performance of PhaseDel.
Kindred-cell-specific somatic deletions (Supplementary Fig. S3a, red
stars) served as a gold-standard set for comparison: somatic deletion
candidates from the two MDA-amplified scWGS datasets (IL-11, IL-12)
and unamplified bulk WGS data of the kindred clone (IL-1c) were
compared to each other. Specifically, we evaluated (1) what fraction of
PhaseDel deletion calls from scWGS are observed in the kindred clone
WGS, and (2) whether the genome-wide deletion rate estimated from
scWGS by PhaseDel is comparable with the actual number of somatic
deletions observed in the clone data.

To confirm the presence of a scWGS-derived PhaseDel deletion in
the kindred clone, we checked supporting reads for the corresponding
deletion from the bulk clone WGS data. A read was considered
deletion-supporting only if it hasboth the same clipping/indel position
and the clipped/indel sequence as the supporting reads from the ori-
ginal scWGS data. A single-cell deletion event was considered con-
firmed if it has ≥5 total reads spanning the breakpoint and ≥3 deletion-
supporting reads in the bulk clone WGS data.

To assess the reliability of PhaseDel’s deleteion rate estimation,
we presumed the actual number of kindred-cell-specific somatic
deletions by counting the number of deletions from the clone WGS
data that are not observed in any other data except the kindred
groups. Multiple filtering steps were applied to make conservative
deletion call sets (Fig. S3c). Specifically, candidates were filtered out if
(1) their breakpoints matched with known polymorphic deletions
reported in the 1000 Genomes structural variation database63 or the
Database of Genomic Variants64, (2) more than one deletion-
supporting read were observed in the matched bulk WGS, or (3)
there were more than one deletion-supporting read in any bulk WGS
data of unrelated individuals fromour studyor in any scWGSdata from
the non-kindred group of Dong et al.27 and our study. Deletion-
supporting reads were identified by checking both the clipping posi-
tion and their clipped sequence as described above. The scWGS-
derived deletions rates by PhaseDel were then compared to this count
from the kindred clone WGS to assess their consistency.

Prediction of underlying DSB repair mechanism
Underlying repair mechanisms for deletion candidates were predicted
following criteria in a previous study31. For eachdeletion candidate, the
genomic element and sequence homology at the deletion breakpoint
were analyzed to classify the resulting deletions into six different
categories: TEI, variable number of tandem repeat (VNTR), NAHR,
FoSTeS/microhomology-mediated break-induced repair (FoSTeS/
MMBIR), NHEJ, and MMEJ (Supplementary Fig. S2b). The gnomAD
database65 and RepeatMasker information obtained from the UCSC
genome browser were utilized to annotate known TEs and repeat
regions. A given deletion was classified as a TEI event if >80% of a
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deletion region and >80% of a known TE overlapped. A given deletion
was classified as a VNTR event if >80% of a deletion region overlapped
with >80% of a known repetitive element from simple repeats (micro-
satellites), satellite repeats, or lowcomplexity repeats. A givendeletion
was classified as a FoSTeS/MMBIR event if either of the two deletion
breakpoints had a >10 bp insertion. The other three types were
determined based on the length of sequence homology between the
deletion breakpoints. If a given deletion had >100bp sequence
homology around the two breakpoints, it was classified as an NAHR
event. If the homology length was from 4 to 100bp, it was classified as
anMMEJ event. If a given deletion lacked sequence homology between
the two breakpoints, it was classified as an NHEJ event. Note that
deletion candidates with sequence homology of 1–3 bp might origi-
nate from both NHEJ and MMEJ, so they were treated as an indepen-
dent group (MH= 1, 2, 3) and were excluded from the entire NHEJ/
MMEJ-based analysis.

Validation sequencing of somatic deletions
Initially, a total of 66 somatic deletion candidates were randomly
selected for validation sequencing and tested in two batches, the first
targeting 35 candidates and the second targeting 38 candidates, with
seven candidates targeted in both batches to double-check the validity
of the sequencing approach. We additionally selected 197 more can-
didates to include candidates from all 29 individuals and diverse
mechanisms. Of the total 263 candidates, 19 failed to generate any
reads even for the wild-type alleles without the deletions. Exclusion of
these 19 candidates from the validation list resulted in 244 dele-
tions with no candidates for two normal individuals (5559 and 5943).

Custom amplicons were designed to cover each deletion break-
point to directly capture DNA fragments spanning a breakpoint. Two
different primer pairs were designed for each deletion candidate,
generating two different amplicons. In general, the primer pairs were
designed to have amplicons smaller than 500 bp in size when a dele-
tion was present, and when this was not possible, the primers were
designed to have the deletion junctionwithin a single read size from at
least one side of the amplicon. After designing primers to candidate
loci, common handle sequences were added to each to allow for
sample-specific index sequences to be added to pooled amplicons,
allowing for multiplex sequencing in single runs. The structure of the
primers used to generate each ampliconwas 5’-ACACTCTTTCCCTACA
CGACGCTCTTCCGATCT-[GENE SPECIFIC SEQUENCE]-3’ and 5’-[GENE
SPECIFIC SEQUENCE] AGATCGGAAGAGCACACGTCTGAACTCCAGTC
AC-3’. Indexes were added in a subsequent PCR using 5’-AATGAT
ACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTT-3’
and 5’- ACACGTCTGAACTCCAGTCACNNNNNNATCTCGTATGCCGTC
TTCTGCTTG-3’, where NNNNNNN represents a 7nt index sequence
that was unique to each sample. PCR cycles were minimized in both
amplification steps to reduce amplification artifacts.

PCRs using the designed primers were performed using Platinum
Taq (ThermoFisher/Life Technologies 10966083) and purified using
magnetic beads (Ampure) on four different DNA sample types: WGA
DNA from the deletion-called single cell, WGA DNA from an uncalled
negative control cell, bulk PFC DNA from the deletion-called indivi-
dual, and bulk non-brain DNA from the deletion-called individual. The
amplicons were indexed and pooled, and then sequenced on MiSeq
with read lengths of 2 × 250 bp (first batch) and 2 × 300bp (second and
third batch), targeting an average depth over 50,000×.

Sequenced reads were aligned to the human reference genome
(GRCh37) using BWA-mem and generated a single BAM file. Indel
realignment and base-quality recalibration were performed on the
BAM file using the GATK. The BAM file was split into four BAM files for
each DNA source by demultiplexing reads based on the index infor-
mation. For each source-specific BAM file, the number of deletion-
supporting reads was counted for each candidate region. A given read
was considered to be a deletion-supporting read if (1) read clipping

occurred at the predicted deletion junction and (2) clipped read
sequences matched the predicted spanning sequences with <10%
mismatches up to a maximum of five mismatched bases. A given
deletion candidate was considered to be validated if two conditions
weremet. The first required conditionwas for the data generated from
WGA DNA of a deletion-called single cell to show more than 10% of
reads spanning the predicted junction to be deletion-supporting
reads. Although the fraction of deletion-harboring genome in a single
cell should be 50% for an actual deletion event, single-cell WGA gen-
erally results in high allelic imbalance and hence the cutoff of 10% was
chosen. The second required conditionwas for <5 deletion-supporting
reads to be identified from the WGA DNA of a negative control cell.
This cutoff was chosen to allow unexpected supporting reads caused
by index hopping; however, most validated candidates (80.9%) had no
deletion-supporting reads in a negative control cell.

Gene ontology enrichment analysis
Somatic deletions disrupting genic regions were selected and sub-
jected to gene ontology (GO) enrichment analysis. Since larger genes
are more likely to be affected by random deletions, we utilized the
GREAT tool66 implemented in R (rGREAT) to perform a binomial test
over genic regions. This test measures the area of overlapping regions
between deletions and genes rather than relying on simple counts of
overlapping genes, thereby controlling bias caused by gene and
deletion size. P values were adjusted with FDR to correct for multiple
testing. Significant GO terms (FDR-adjusted P value <0.05) involved in
neuronal functions were reported in Supplementary Fig. S5. Full list of
enriched GO terms is described in Supplementary Data 2.

Regression analysis of somatic deletion and age
The association between the estimated somatic deletion rate and age
in normal PFCs was tested using a linear regressionmodel, controlling
for gender using R software (version 4.0.1). For each cell, the number
of observed NHEJ- andMMEJ-based deletions over the number of total
observed deletions in that cell was multiplied by the somatic deletion
rate to estimate the rate of NHEJ andMMEJ-based deletions in the cell.
Further regression analysis was performed to determine the associa-
tion between each of the NHEJ and MMEJ deletion rates and age.

Regional burden analysis of somatic deletions
The burden of somatic deletions in normal PFCs was measured to
compare four types of genomic loci: intergenic, genic, exonic, and
intronic regions. To check the burden of transcription-coupled
damage, we also sought to compare these to the most highly expres-
sed genes (top 10%) in normal PFCs. To define the top 10% highly
expressed genes in normal PFCs, we obtained gene expression data
from normal PFCs from the GTEx database67 and measured gene
expression levels controlling for age and gender using DESeq268. An
average of the expression levels for each gene across all the samples
was calculated to make a single list of gene expression, and the genes
in the top 10% were subjected to burden analysis. ANNOVAR69 was
used to annotate the genomic region and the affected genes for
somatic deletion candidates.

The count of somatic deletions can be confounded by per-cell
differences in allelic/locus dropouts occurring during WGA and in
covered phaseable regions. To correct these biases, we simulated
1000 sets of random somatic deletions for each cell, generating the
same number and the same size deletions from the original call but
randomly distributed within the amplified and phaseable regions for
each cell. We merged deletions from all cells into one set of deletions
and measured the deletion burden in each of five regions, repeated
this 1000 times with the simulated data, and calculated the expected
burden. We then calculated an observed/expected ratio with the 95%
confidence interval for each region, as shown in Fig. 3d. The ratio was
compared to the expected distribution to obtain the empirical P value.
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Both the simulation and the burden test were separately performed for
NHEJ- andMMEJ-based deletions to independently test the enrichment
of each underlying mechanism.

Comparison of normal vs diseased single neurons
The somatic deletion burden was calculated for AT, CS, and XP single
neurons by taking the average of the estimated somatic deletion rates
for each disease group, reported with 95% confidence interval. NHEJ
and MMEJ deletion burdens were measured in the same way. The
burdens were compared to those from age-matched normal neurons;
11 AT and 26 CS neurons were compared to 34 normal neurons from
adolescent individuals (15–20 years) and 13 XP neurons were com-
pared to 14 normal neurons from adult individuals (40–50 years).
Pairwise group comparisons were performed using the two-sided
Mann–WhitneyU test. Since the ages of sampleswithin the disease and
normal groups were not perfectly matched, we also compared the
burden after correcting for age, by subtracting the predicted age-
associated burden per cell using the estimated regression coefficient
for normal cells. Supplementary Fig. S6c demonstrates that age-
corrected deletion burdens were consistent with non-age-corrected
burdens for all diseases and deletion types (Fig. 4b, c, e).

Deletion burden analysis with gene expression
We obtained gene expression data on normal PFCs from the GTEx
database and constructed a single list of all genes with average
expression levels, as described before. The total gene list was then
divided into four quartiles based on expression levels. Since there is no
publicly available gene expression data directly measured from the
brains of CS patients, we obtained instead gene expression data from
iPSC-derived NSCs originating from the fibroblasts of CS patients
harboring germline mutations in the CSB gene45. Per-gene read counts
measured by HTSeq70 were directly obtained from the GEO database
(GSE124208) and normalized to RPKM (reads per kbpermillion reads).
CS gene expression levels were then averaged across the samples and
the total genes were divided into four quartiles as with normal PFCs.
Gene expression data of iPSC-derived NSCs originating fromwild-type
fibroblasts from the same study were also analyzed in the same way to
further verify whether the association with gene expression was
derived from the CSBmutation and not from the characteristic of the
iPSC-derived cell line itself.

For each clinical condition (e.g., normal, CS), we constructed a
merged set of somatic deletions identified from all cells of the corre-
sponding individuals. The density of somatic deletions (deletion hit/
Mb) was calculated for the gene set in each quartile and depicted in a
line graph showing all quartiles (Figs. 3e and 4d). To calculate the
repair-mechanism-specific burden (NHEJ and MMEJ), deletion sets
were divided into NHEJ and MMEJ sets based on their predicted
mechanisms, and the density of each set was measured. The standard
error in the somatic deletion burden was assessed by bootstrapping,
which sampled the same number of deletions with replacement from
the entire deletion set and calculated the density for 1000 times.

Statistical analysis
All the statistical tests wereperformedusing R software (version 4.0.1).
Detailed information for statistical tests including the type of test for
each analysis and number of cells/samples are described in Methods
and figure legends. All information related to the figures including
usedmeasures, definition of error bars, definition and exact value of n,
and statistical significance were described in figure legends. Statistical
significance was defined as P < 0.05.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Single-neuron whole-genome sequencing data of control individuals
and of individuals with CS and XP from the published work have been
deposited in the NCBI Sequence Read Archive (SRA) (SRP041470 and
SRP061939), the NIH Alzheimer’s disease genomic data repository
(NIAGADS and NG00121), and dbGaP (phs001485.v1.p1 [https://www.
ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs001485.
v2.p1]). Single-neuron whole-genome sequencing data of AT patients
and targeted amplicon sequencing data for validation of selected
deletion candidates are deposited in dbGaP (phs003005.v1.p1 [https://
www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=
phs003005.v1.p1]). The NIAGADS and dbGaP data are available under
controlled-use conditions with the data use limitations and the
instructions for applying to access the sequencing data. Whole-
genome sequencing data of single fibroblasts and single-fibroblast-
derived clones used for method validation are obtained from the SRA
(SRP067062). Gene expression data on normal PFCs and iPSC-derived
NSCs are obtained from the GTEx database (V8 gene transcripts per
million (TPM) data, https://www.gtexportal.org/home/datasets) and
the GEO database (GSE124208). All data needed to evaluate the con-
clusions in the paper are present in the paper and/or the Supple-
mentary information. Source Data are provided with this paper.

Code availability
The implemented program with the source code and a user manual is
available at https://sourceforge.net/projects/phasedel/.
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