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SUMMARY 

Characterizing the mechanisms of somatic mutations in the brain is important for understanding 

aging and disease, but little is known about the mutational patterns of different cell types. We 

performed whole-genome sequencing of 71 oligodendrocytes and 51 neurons from neurotypical 

individuals (0.4 to 104 years old) and identified >67,000 somatic single nucleotide variants 

(sSNVs) and small insertions and deletions (indels). While both cell types accumulate mutations 

with age, oligodendrocytes accumulate sSNVs 69% faster than neurons (27/year versus 16/year) 

whereas indels accumulate 42% slower (1.8/year versus 3.1/year). Correlation with single-cell 

RNA and chromatin accessibility from the same brains revealed that oligodendrocyte mutations 

are enriched in inactive genomic regions and are distributed similarly to mutations in brain 

cancers. In contrast, neuronal mutations are enriched in open, transcriptionally active chromatin. 

These patterns highlight differences in the mutagenic processes in glia and neurons and suggest 

cell type-specific, age-related contributions to neurodegeneration and oncogenesis. 

 

KEYWORDS 

Somatic mutations, glial cells, oligodendrocytes, oligodendrocyte precursor cells, aging, brain 

disorders, brain cancer, gliomagenesis, glioma. 

 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 14, 2023. ; https://doi.org/10.1101/2023.01.14.523958doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.14.523958
http://creativecommons.org/licenses/by-nd/4.0/


INTRODUCTION 1 

Somatic mutations accumulate in every tissue of the human body throughout life, via 2 

mechanisms that depend on intrinsic tissue physiology and exogenous agents1-8. Because human 3 

tissues comprise diverse cell types with unique properties, quantifying cell type-specific rates 4 

and mechanisms of somatic mutation is fundamental to understanding aging and disease 5 

initiation at the tissue level. Although previous studies have addressed somatic mutations in 6 

aging human neurons4,9-11, mutations in glial cells⎯which represent more than half of the 7 

cellular content of the brain and play primary roles in several brain disorders⎯have not yet been 8 

examined. Abnormalities of white matter (WM), which consists mostly of glial cells, are 9 

hallmarks of normal brain aging12,13 as well as neurodegenerative14,15 and neuropsychiatric 10 

disorders16, but the causes of these changes are unknown. Furthermore, glial progenitor cells are 11 

the cell-of-origin of many brain tumors17, and recent findings showed that WM in non-diseased 12 

human brain is enriched with clonal oncogenic mutations compared to grey matter18. 13 

Oligodendrocytes (OLs) are the main cell type of the WM, and OL dysfunction has been 14 

reported in certain brain tumors, age-related disorders19,20, psychiatric disorders21,22 and immune-15 

related multiple sclerosis23. OL generation in humans begins during the second trimester of 16 

gestation, peaks at birth and during the first years of life, and continues into adulthood, though at 17 

reduced rates24,25. Unlike neurons, which mostly arise before birth, OLs are replenished 18 

throughout postnatal life by resident oligodendrocyte-precursor cells (OPCs)24,26, with the rate of 19 

replenishment diminishing with age27. Dysregulation of proliferation and differentiation in the 20 

OL lineage is involved in brain cancer, and OPCs are recognized as the cell of origin in some 21 

gliomas 28-31. Thus, in contrast to neurons, OLs may be subject to mutational processes related to 22 

DNA replication and can potentially undergo positive selection relevant for cancer insurgence32.  23 

 In this study, we assessed genome-wide rates and patterns of aging-related somatic 24 

mutations in OLs compared to neurons isolated from the same individuals with single-cell 25 

whole-genome sequencing (scWGS). In addition, we generated single-cell Assay for 26 

Transposase-Accessible Chromatin with high-throughput sequencing (scATAC-seq) data from 27 

these brains and integrated new as well as published8 single-cell RNA sequencing (scRNA-seq) 28 

data obtained from individuals in the same cohort (Figure 1A). Joint analysis of these data 29 

showed OL- and neuron-specific rates and patterns of somatic mutation accumulation, with DNA 30 
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replication and transcription playing significant roles in OL and neuronal mutagenesis, 31 

respectively, and captured features of mutational processes in the differentiated OLs as well as in 32 

precursor OPCs. The substantial differences in somatic mutation localization between these two 33 

adjacent and interacting cell types informs cell type-specific contributions to distinct age-related 34 

diseases. 35 

 36 

RESULTS 37 

OLs accumulate somatic mutations at different rates than neurons  38 

OLs were isolated by antibody staining of nuclei prepared from post-mortem cortical 39 

brain tissue, selecting SOX10-positive and NEUN-negative nuclei by fluorescence-activated 40 

nuclear sorting (FANS). scRNA-seq performed on the sorted populations confirmed >99% purity 41 

for both mature OLs and neurons sorted by NEUN positivity (Figure S1, Methods). Overall, 71 42 

OLs were obtained from the prefrontal cortex (PFC) of 12 neurologically normal individuals 43 

spanning 0.4 to 83 years of age (Table S1); 31 single-OL genomes were amplified by primary 44 

template-directed amplification (PTA)10,33 and 40 were amplified by multiple-displacement 45 

amplification (MDA) before PTA became available. Finally, we combined our single-OL 46 

scWGS with 51 PTA-amplified neurons previously generated10 from 17 individuals, including 11 47 

which overlap our OL cohort. Notably, due to the higher rate of technical artifacts caused by 48 

MDA10, we focused on PTA-amplified samples except where indicated. Following scWGS, 49 

somatic single-nucleotide variants (sSNVs) and small (1-30 base pair (bp)) insertions/deletions 50 

(indels) were identified genome-wide using SCAN2, an algorithm we developed recently10 51 

(Table S2). To focus on somatic mutations acquired during aging rather than development, high 52 

allele frequency clonal sSNVs and indels were excluded by removing somatic calls supported by 53 

one or more reads in matched 30-45X bulk DNA sequencing.  54 

Compared to neurons, scWGS of OLs revealed higher yearly rates of sSNV accumulation 55 

but lower rates of indel accumulation. As is the case with neurons and many other cell types3,4,9-
56 

11,34, the increase in OL sSNV burdens was remarkably linear with respect to age, with a rate of 57 

27 sSNVs/year (95% CI: 25.0-28.9), which is significantly greater than the neuronal rate of 16 58 

sSNVs/year (CI: 14.9-17.4, Figure 1B; for the difference, P = 9.6 x 10-17, t-test for coefficients in 59 

a linear mixed model (LMM t-test), see Methods). At birth, OLs contained 60% more sSNVs 60 

per genome compared to neurons (intercept: 191 vs 119), though this difference was not 61 
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significant (P = 0.15, LMM t-test). Unlike sSNVs, indels accumulated more slowly in OLs than 62 

in neurons (1.8 (CI: 1.56-2.07) versus 3.1 (CI: 2.61-3.61) indels/year, respectively, P = 1.42 x 63 

10-5, LMM t-test, Figure 1B). Indel burdens at birth were comparable between cell types. 64 

Deletions were more prevalent than insertions in both cell types, consistent with previous 65 

reports10,35 (Figure S2A); however, OL indels were mostly single-bp deletions, while neurons 66 

carried greater numbers of 2-4bp deletions and 1bp insertions (Figure S2B), likely representing 67 

distinct mechanisms of indel generation. 68 

OL and neuronal mutations showed opposite biases for genic regions, suggesting 69 

different mechanisms of mutagenesis and different consequences for gene integrity. OL sSNVs 70 

were enriched in intergenic regions (13%, P < 10-4; all P-values for enrichment analyses based 71 

on permutation tests, see Methods) and depleted in introns and coding regions (15.4%, P < 10-4 72 

and 19.7%, P = 0.0024, respectively) (Figure 1C). This pattern was replicated in MDA-amplified 73 

OLs (Figure S2C, see Methods). Neuronal sSNVs were instead overrepresented in genes 74 

(12.7%, P = 0.0047 in exons; 5.2%, P < 10-4 in introns) and depleted in intergenic regions (5.4%, 75 

P < 10-4). Indels mirrored these patterns but often with greater effect sizes: in genes, OL indels 76 

were depleted (34.8%, P = 0.0656 in exons; 4.9%, P = 0.17 in introns) whereas neuronal indels 77 

were strongly enriched, especially in exons (78.6%, P < 10-4 in exons; 19.3%, P < 10-4 in 78 

introns), as previously reported10. In general, a larger fraction of neuronal mutations were 79 

predicted (by SnpEff36, see Methods) to functionally impact genes (Figure 1D). Strikingly, the 80 

rate of indels with the most severe gene-altering effects was ~3-fold higher in neurons than in 81 

OLs. Due to the small number of mutations overall, no significant mutation enrichment or 82 

depletion was detected for any individual genes after correction for multiple hypothesis testing 83 

(Figure S2D). 84 

 85 

OL somatic mutations produce signatures associated with cell proliferation 86 

 Analysis of mutational spectra and signatures indicated shared and cell type-specific 87 

mutational mechanisms in OLs and neurons. The spectrum of OL sSNVs closely matched the 88 

spectra of highly proliferative hematopoietic stem and progenitor cells (HSPCs, cosine similarity 89 

0.946),9,34,37,38 whereas neurons were only marginally similar to HSPCs (cosine similarity 0.773, 90 

Figure 2A). Surprisingly, the OL spectrum was less similar to neurons (cosine similarity 0.887) 91 

than to HSPCs, likely reflecting a contribution of cell proliferation to OL somatic mutagenesis.  92 
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To explore mutagenic mechanisms, we identified single base substitution (SBS) 93 

mutational signatures for the identified sSNVs using the COSMIC catalog (v3.1)39. Ten of the 94 

COSMIC SBS signatures passed our thresholds for activity in either OLs or neurons (Figure 2B, 95 

Methods) and the remainder were removed to reduce overfitting. Signatures SBS5 and SBS89 96 

were the most prevalent signatures in both cell types, and both signatures accumulated at higher 97 

rates in OLs compared to neurons (SBS5, 10.2 versus 6.95 sSNVs/year, P = 0.014; SBS89, 5.5 98 

versus 1.95, P = 6×10-11, Figure 2B-C, LMM t-test). SBS5 is a clock-like signature that 99 

accumulates independently of cell division, whereas SBS89 was recently reported in colon 100 

crypts3 but has no known etiology. Signatures SBS1 and SBS32 were strongly associated with 101 

age in OLs (P < 104 for both signatures, LMM t-test) but were nearly absent in neurons (P = 0.17 102 

and P = 0.55, LMM t-test). SBS32 is a C>T signature recently reported as a component of the 103 

HSPC spectrum34 and SBS1 is a clock-like signature associated with cell division40 and 104 

accumulated at rates of 2.63 sSNVs/year and 0.20 sSNVs/year in OLs and neurons, respectively 105 

(Figure 2B-C). Since mature OLs are post-mitotic, SBS1 may be generated primarily during the 106 

OPC stage; if true, the linear accumulation of SBS1 with age in mature OLs implies surprisingly 107 

constant levels of OPC division during adult life. Only SBS16, a signature associated with 108 

transcription, accumulated at a higher rate in neurons, with 1.59 sSNVs/year compared to 0.38 109 

sSNVs/year in OLs, consistent with the enrichment of neuronal mutations in transcribed genomic 110 

regions and in line with previous reports4,10. 111 

Two pairs of closely related OLs, which likely trace their ancestry to common OPCs, 112 

illustrate the extent to which signatures of early- and late-life mutations differ, and represent 113 

permanent maps of developmental lineages and age-related changes. Despite filtering high allele 114 

frequency clonal sSNVs by removing mutations found in bulk tissues, two OL pairs from two 115 

individuals (subjects 5559 (PTA OLs) and 5657 (MDA OLs), 19.8y and 82y, respectively) 116 

shared unusually high levels of sSNVs (68 and 64 sSNVs, respectively, Figure 2D), indicating 117 

common ancestry. In both subjects, the shared sSNVs were mostly C>T transitions at CpG sites 118 

and fitting to the COSMIC signatures revealed a 38% contribution from the cell-division-related 119 

signature SBS1. Each pair of OLs also contained similar numbers of private sSNVs (179 and 173 120 

for subject 5559; 897 and 1017 for subject 5657), consistent with equal lifetimes for each of the 121 

cognate OLs after the division of their most recent common ancestor (MRCA) OPC. The 122 

mutational spectrum of private sSNVs was similar to the OL spectrum (Figure 2A,D) and, after 123 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 14, 2023. ; https://doi.org/10.1101/2023.01.14.523958doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.14.523958
http://creativecommons.org/licenses/by-nd/4.0/


fitting to COSMIC and removing MDA-associated artifacts (Methods), the spectrum was 124 

primarily explained by SBS89 and SBS5 (34% and 20%), followed by SBS12, SBS1 and SBS32 125 

(15%, 9% and 9%, respectively, Figure 2D). We estimated the age at which the MRCA divided 126 

in each subject by adjusting private sSNV counts for calling sensitivity and dividing by our 127 

yearly sSNV accumulation rate (see Methods). This placed the MRCA of subject 5559 near 128 

birth and the MRCA of subject 5657 between 0-20 years of age. Comparison of mutation spectra 129 

with infant OLs (subjects aged 0-2 years old) provided orthogonal evidence that the MRCA 130 

occurred during infancy. Indeed, the spectrum of shared sSNVs matched the spectrum of infant 131 

OL sSNVs with a cosine similarity of 0.97 (Figure 2E). Crucially, the neuronal sSNV spectrum 132 

from the same infant subjects contained far fewer SBS1-like C>Ts at CpG dinucleotides, 133 

implying that the increase in SBS1 occurred in an OL-specific lineage and does not reflect early 134 

clonal sSNVs that evaded our filters. We speculate that the most likely MRCA time coincides 135 

with a burst of OL generation that occurs in the young human brain (0-10 years of age)24. The 136 

relationships of these two pairs of cells suggest that shared mutations mark a permanent forensic 137 

lineage tree, while non-shared mutations represent a linear timer of when any two cells separate 138 

from a common progenitor.  139 

 Indel (ID) signatures revealed shared and specific mutational processes further 140 

distinguishing OLs from neurons (Figure 3A-C). ID4, a signature representing  ≥2bp deletions 141 

and associated with transcriptional mutagenesis41, was most strongly correlated with age in 142 

neurons, as previously reported 9,10, but was almost completely absent in OLs (P = 0.534, LMM 143 

t-test; Figure 3C). ID5 and ID8, two clock-like indel signatures, were present in both cell types, 144 

with ID8 correlated more strongly with age in neurons than in OLs. The two remaining clock-145 

like indel COSMIC signatures, ID1 and ID2, were not detected, but they are difficult to identify 146 

in PTA data due to similarity with sequencing artifacts10. ID9, which is characterized by 1bp 147 

deletions, was the most prevalent signature in OLs and accumulated at a rate of 0.54 indels/year; 148 

in neurons, the accumulation was significantly lower at 0.20 indels/year (P = 0.0017, LMM t-149 

test). Interestingly, this ID9 signature is also found in a large fraction of adult gliomas42 as well 150 

as in a considerable fraction of other brain tumors39.  151 

 152 

OL SNVs are enriched in inactive genomic regions 153 
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Our earlier observation that OL mutations were depleted in genes—opposite to the 154 

pattern in neurons (Figure 1C)—suggested different determinants of mutagenesis in these two 155 

cell types. Comparison of somatic mutation density to additional data types, including scRNA-156 

seq, scATAC-seq, replication timing, and chromatin marks, revealed that OL mutations are 157 

enriched in chromatin that is either inaccessible, untranscribed, or which harbors repressive 158 

histone marks—which we refer to as inactive chromatin—in striking contrast to neuronal 159 

mutations. We first compared somatic mutation densities to gene expression levels from brain 160 

scRNA-seq data for three subjects in our cohort (1465, 4638 and 4643; 40,083 PFC cells in total; 161 

Figure 4A) 8. OL sSNVs were depleted by 25%-32% in the top few deciles of expression 162 

measured in OLs (Figure 4B, P < 10-4; all P-values in this section are from permutation tests) 163 

and were similarly depleted in all other cell types detected in our scRNA-seq data. The negative 164 

association between transcription level and somatic mutation density in OLs was confirmed 165 

using bulk brain RNA-seq data from the Genotype Tissue Expression Consortium (GTEx)43 166 

(Figure S3A). Indels in OLs were not significantly enriched or depleted, possibly due to a lack of 167 

statistical power caused by the relatively low number of somatic indels in OLs (Figure 4B). 168 

Next, brain scATAC-seq data representing ~82,000 cortical cells obtained from ten 169 

subjects in our cohort (see Methods) revealed a strong depletion of OL sSNVs in open 170 

chromatin (Figure 4C,D). In the decile of the genome with the highest chromatin accessibility 171 

from OLs identified in scATAC-seq data, OL sSNVs were depleted by 29% (P < 10-4). Slightly 172 

weaker sSNV depletions were observed for the remaining cell types (mean 21% for the top 173 

decile of chromatin accessibility), with OPCs showing the second strongest depletion signal 174 

(24%, P < 10-4). A weak but negative trend between OL indel density and chromatin 175 

accessibility was also observed (Figure 4D).  176 

Data from the Encyclopedia of DNA Elements (ENCODE) 44 and the Roadmap 177 

Epigenomics Project45 further confirmed enrichment of OL mutations in inactive chromatin. 178 

First, OL sSNVs were significantly enriched in late-replicating regions of the genome (which 179 

tend to be less transcriptionally active) as determined by RepliSeq data from the ENCODE 180 

project (mean 39% in the latest replicated decile, P < 10-4; Figure 4E, S3B). Comparison to 181 

histone marks from the Roadmap Epigenomics Project revealed negative associations between 182 

OL sSNVs and marks of open chromatin, transcription and active regulatory elements 183 

(H3K27ac, H3K36me3, H3K4me1, H3K4me3 and H3K9ac) and positive associations with 184 
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repressive marks (H3K9me3 and H3K27me3)46 (Figure 4F-G). Chromatin state annotations from 185 

ChromHMM46, which classify chromatin based on an ensemble of histone marks, further 186 

confirmed the pattern of OL mutation enrichment in inactive or inaccessible genomic regions, 187 

with OL sSNVs overrepresented in heterochromatin (state 9, 24% enrichment, P = 0.0036) and 188 

quiescent regions (state 15, 11% enrichment, P < 10-4), and depleted in the transcriptionally 189 

active states 1-7 (Figure 4H). The strongest depletion of OL sSNVs across all genomic 190 

covariates analyzed in this study was observed for active transcription start sites (ChromHMM 191 

state 1, mean 50.4% depletion across brain tissues) and was not specific to any of the 13 192 

Roadmap Epigenomics brain tissues (Figure S3C). An orthogonal dataset of active promoters in 193 

neurons, oligodendrocytes, microglia and astrocytes from flow-sorted cell populations47 further 194 

confirmed the strong depletion of OL sSNVs in promoters (mean depletion 51%) and again there 195 

was no marked preference for the cell type from which the promoters were measured (Figure 4I). 196 

The distribution of neuronal mutations differed from OLs across all the genomic 197 

covariates we tested: neuronal sSNV and indel rates increased with gene expression, chromatin 198 

accessibility and active histone modifications and decreased with inactive histone modifications 199 

(Figure 4A-G). Unlike OLs, somatic mutations in neurons were more specifically associated with 200 

transcription levels measured in brain tissues (Figure S3A) and especially with single cell 201 

transcriptomic and chromatin accessibility signals from neurons (Figure 4B,D). Neuronal 202 

mutations showed little association with replication timing (Figure 4E), which is unsurprising 203 

since most neuronal mutations are acquired in the post-mitotic state and clonal somatic mutations 204 

were largely removed by our bulk filters.  205 

To further understand the action of mutational processes in the two cell types, we 206 

correlated SBS mutation signature exposures (rather than total mutation density) to the 207 

previously discussed genomic covariates. In OLs, SBS1 density generally followed the patterns 208 

of total mutation density, with positive associations with inactive chromatin and late replication 209 

timing (Figure 5A). The distribution of SBS1 in neurons mimicked that of OLs and, in particular, 210 

was strongly positively associated with replication timing, suggesting that neuronal SBS1 may 211 

have accumulated during cell divisions in neurogenesis. SBS16 (a T>C signature associated with 212 

transcriptional activity) exposure in neurons was positively associated with active histone marks, 213 

gene expression, and chromatin accessibility levels from excitatory and inhibitory neurons 214 

(Figure 5B). Consistent with the known transcribed-strand bias of SBS16, neuronal T>C 215 
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mutations exhibited the largest transcribed-strand bias of all mutation types in this study (Figure 216 

S4). Interestingly, despite neurons being post-mitotic, SBS16 density trended negatively with 217 

replication timing, likely reflecting higher gene density in early replicating regions. 218 

Although SBS5 is the most prevalent signature in both OLs and neurons, it did not 219 

accumulate in the same genomic regions in these two cell types, particularly with respect to 220 

expression levels (Figure 5C). In OLs, patterns of SBS5 exposure showed little difference from 221 

the aggregate somatic mutation density, with negative associations with active epigenetic marks, 222 

gene expression and open chromatin and positive associations with inactive marks and late 223 

replicating regions. However, in neurons, SBS5 was not significantly associated with any of the 224 

covariates tested, with only a marginally significant positive trend with scRNA-seq expression in 225 

excitatory neurons (top 33%, P = 0.08, Figure 5C). These observations suggest that either SBS5 226 

is generated by cell type-specific mechanisms or that SBS5 may not be a fully decomposed 227 

signature—in particular, it may be contaminated by the transcription-associated SBS16, 228 

consistent with the marginally significant association with expression levels in neurons—as 229 

previously suggested9.  230 

 231 

The OL mutation density profile resembles that of glial-derived tumors  232 

Patterns of somatic mutation in cancer often contain sufficient information to identify the 233 

cell type from which a tumor emerged48; thus, we explored whether our normal OL sSNV 234 

densities resembled those from a large collection of cancer WGS data from the Pan-Cancer 235 

Analysis of Whole Genomes (PCAWG) project 42. OL sSNVs were positively correlated with 236 

somatic mutation densities of all cancer types from PCAWG whereas neuronal sSNVs were not 237 

correlated with any tumor type (Figure 6A). Specifically, for OL mutations, the highest 238 

correlations observed corresponded to glial-derived tumors of the central nervous system (CNS) 239 

for which OPCs are thought to be the cell of origin (CNS-GBM, glioblastoma multiforme and 240 

CNS-Oligo, oligodendroglioma)28-31.  241 

Our scATAC-seq data allowed further cell type-specific evaluation of cancer sSNV 242 

densities. Among all tumor types in PCAWG, GBM sSNV density was best predicted by OPC-243 

specific scATAC-seq tracks using a regression model, with 44% of variance in GBM sSNV 244 

density explained (Figure 6B). This provides additional evidence that OPCs are the cell of origin 245 

for GBM tumors and that scATAC-seq is a powerful approach for determining the cell-of-origin 246 
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for a tumor48. Expression levels from scRNA-seq were far less effective in explaining cancer 247 

mutation density, explaining only 6% of variance in the best case (Figure 6C).  248 

Finally, we tested whether cancer-associated genes were more likely to be mutated in 249 

OLs compared to neurons. For each tumor type, we determined the 100 most frequently mutated 250 

genes and computed an odds ratio (OR) indicating whether mutations in OLs (OR > 1), neurons 251 

(OR < 1) or neither cell type (OR=1) were more likely to occur in the frequently mutated genes. 252 

In general, OL sSNVs were biased toward cancer-associated genes (OR near 1.1 for most cancer 253 

types, Figure 6D), likely reflecting the general similarities between OL and cancer sSNV 254 

mutation densities. However, OL sSNVs were clearly biased toward genes mutated in CNS 255 

tumors, with the highest odds ratios observed for oligodendrogliomas (CNS-Oligo, OR=1.35, P 256 

= 1.6×10-7, Fisher’s exact test) and pilocytic astrocytomas (CNS-PiloAstro, OR=1.31, P = 257 

3.1×10-6). Analysis of the top N cancer mutated gene lists for N = 10 to 500 confirmed that these 258 

findings did not depend on our choice of cutoff N = 100 (Figure S5). Altogether, the similarities 259 

between OL and cancer mutation patterns suggest a contributing relationship between OL 260 

mutations—especially those acquired at the OPC stage—and tumorigenesis. 261 

 262 

DISCUSSION 263 

Our integrative analysis of somatic mutations uncovered OL-specific mutational 264 

processes during aging compared to neurons and suggests how these differences may predispose 265 

to diseases such as cancer. Our study design provides a unique opportunity to explore how 266 

different cell types sharing the same microenvironment for years—or even decades—can exhibit 267 

contrasting features that ultimately shape the human brain. An additional advantage of our design 268 

is that comparison of OLs and neurons measured by the same single-cell DNA sequencing 269 

technology helps to rule out the possibility that differential mutation rates or genomic 270 

distributions reflect technical artifacts or biased representation of specific genomic regions. 271 

Somatic mutation burdens increase linearly in both OLs and neurons with age; however, 272 

OLs accumulate 69% more sSNVs than neurons and 42% fewer indels. The apparent low indel 273 

rate in OLs may reflect a high rate of indel mutagenesis in neurons compared to other cell types, 274 

as reported by previous studies9. Some of the excess sSNVs in OLs (e.g., those attributed to 275 

SBS1) are likely associated with cell division in ancestral OPCs49, but due to lacking information 276 

regarding the mechanisms of SBS5, SBS32 and SBS89 mutagenesis, it is not clear what 277 
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processes account for the remaining excess sSNV burden in OLs. A recent study highlighted the 278 

importance of cell proliferation-independent sources of somatic mutations in normal cells and 279 

hypothesized that the interplay between cell type-specific DNA damage and repair processes 280 

may underlie differences in mutation burden between cell types9. Hence, less efficient DNA 281 

repair processes in OLs—rather than additional DNA damage—may be a plausible explanation 282 

for the excess OL sSNV burden compared to neurons. Follow-up studies mapping DNA repair 283 

sites in OLs versus neurons might be needed to address this question50-52. Another important 284 

factor differentiating mutations in OLs and neurons is the strength of selective forces acting 285 

during aging. Aging neurons cannot be subject to positive selection, and negative selection is 286 

likely limited to highly deleterious mutations that induce cell death. OLs, on the other hand, 287 

include mutations accumulated by postnatal cycling OPCs in which both positive and negative 288 

selective effects may be present. Thus, the subset of OL somatic mutations acquired at the 289 

ancestral OPC stage are of particular importance since they can expand clonally and amplify 290 

deleterious effects. 291 

OL mutations are more prevalent in transcriptionally inactive and/or inaccessible 292 

chromatin and resemble patterns reported in cancer32 and other proliferative cells48. Associations 293 

between OL somatic mutation density and genomic covariates generally were not cell type- or 294 

tissue-specific; however, it is important to interpret this observation in light of the fact that OL 295 

mutations represent a combination of mutations accrued during the OPC and mature OL states. 296 

Neuronal mutations were characterized by a strongly contrasting pattern of enrichment in 297 

transcriptionally active, open chromatin with clear preference for genomic covariates measured 298 

in brain tissue and, specifically, excitatory neurons. 299 

Mutational signature analysis was helpful in interpreting some contributing factors to the 300 

overall mutational burden and to its accumulation over time. SBS1 was prevalent in OLs and 301 

nearly absent in neurons, consistent with previous characterizations of SBS1 as a cell division-302 

dependent mutational clock40 and at odds with a recent study which estimated a nearly 10-fold 303 

greater SBS1 rate in human neurons9. SBS5 made up the majority of mutations in both OLs and 304 

neurons, but was distributed differently across the genome in the two cell types. One attractive 305 

explanation for this is differential repair: i.e., that SBS5-associated DNA damage may occur 306 

throughout the genome but be more efficiently repaired in certain genomic regions in a cell type-307 

specific manner. However, concerns of contamination by other signatures and other algorithmic 308 
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issues may yet be to blame; for example, the current COSMIC catalog was generated primarily 309 

by cancer exomes and genomes, and signatures present in post-mitotic cells are likely to be 310 

under-represented. In addition, despite the dozens of single cells we sequenced, the total number 311 

of mutations is not large enough to confidently identify signatures that are present at low 312 

exposures. 313 

Our work demonstrates marked differences in somatic mutation accumulation between 314 

neurons and OLs in the same tissue and reveals the mutational dynamics of OLs during 315 

neurotypical brain aging. In contrast to neuronal mutations, OL mutations mimic features of 316 

somatic mutations in cancers of the CNS, including (1) OL mutational signatures39 and (2) the 317 

distribution of mutations across the genome, particularly for tumors for which OPCs are believed 318 

to be the cell of origin (GBM and oligodendroglioma). These observations emphasize the 319 

contribution of mutations that occurred during the OPC stage to the mutation landscape of 320 

mature OLs. Furthermore, the differing genomic regions enriched for somatic mutations in OLs 321 

versus neurons suggests that cell type-specific mutation distributions may contribute to cell type-322 

specific predispositions to particular pathologies. 323 

324 
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FIGURE LEGENDS 355 

 356 

Figure 1. Oligodendrocytes and neurons exhibit contrasting patterns of somatic mutation 357 

accumulation. 358 

(A) Experimental strategy. Oligodendrocytes (OL; n=31 PTA, n=40 MDA) and neurons (n=51 359 

PTA) were obtained from the brains of 17 neurotypical individuals (0-104 years of age) through 360 

FANS using NEUN (neurons) and SOX10 (OL) antibodies. Single genomes were amplified 361 

using PTA or MDA and non-clonal sSNVs and indels were called using SCAN2. Mutation 362 

distributions were compared with scATAC-seq and scRNA-seq data obtained from a subset of 363 

the 17 individuals. 364 

(B) Extrapolated genome-wide sSNV and indel burdens for OLs and neurons as a function of 365 

age. Trend lines are mixed-effects linear regression models (see Methods). 366 

(C) Distribution of OL and neuronal sSNVs and indels in genic and intergenic regions. 367 

Enrichment/depletion levels are calculated by comparison to a null distribution obtained by 368 

randomly shuffling mutations across the genome (see Methods). 369 

(D) Percent of somatic mutations with HIGH, MODERATE and LOW impact on genes, as 370 

determined by SnpEff. 371 

See also Figure S1 and Figure S2. 372 

 373 

Figure 2. Comparison of single base substitution (SBS) mutational signatures in human 374 

oligodendrocytes and neurons. 375 

(A) SBS mutational spectra of neuronal and oligodendrocyte sSNVs identified in this study (left 376 

column); the spectrum of hematopoietic stem and progenitor cells (HSPCs) identified in Lee-Six 377 

et al.37 and a signature derived from an analysis of human lymphocytes (Machado et al.38). 378 

Cosine similarities are shown for each pair of spectra. 379 

(B) The number of somatic mutations, after extrapolation to genome-wide burdens, attributed to 380 

each COSMIC SBS signature by least squares fitting for each PTA single OL and neuron. 381 

Subjects are ordered from young (left) to elderly (right). A reduced COSMIC catalog of 10 382 

signatures with evidence of activity in either OLs or neurons was used to minimize overfitting 383 

(see Methods). 384 

(C) Same as (B), but plotted against age. Each point represents one single cell. Trend lines are 385 

mixed-effects linear regression models (see Methods). 386 

(D) Schematic of two pairs of related OLs and estimates of the time of division for each pair’s 387 

most recent common ancestor (MRCA). Insets show the SBS spectrum and contributions of 388 

COSMIC signatures for sSNVs acquired before division of the MRCA (shared, top left) and 389 

sSNVs acquired after division of the MRCA (private, top right). Spectra in panels (D) and (E) 390 

are reconstructions obtained by summing exposure-weighted signatures after fitting the infant 391 

mutations to the COSMIC SBS catalog (see Methods). 392 

(E) Mutational spectra of all mutations from infant (0-2 years of age) subjects in PTA neurons 393 

(left) and PTA OLs (right). The similarity in spectra between infant OL mutations and shared OL 394 

mutations supports the estimated time of most recent common ancestor (MRCA) division. 395 

  396 
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  397 

Figure 3. Comparison of insertion and deletion (ID) COSMIC signatures in human 398 

oligodendrocytes and neurons. 399 

(A) Spectra of somatic indels from human OLs and neurons using the 83-dimensional indel 400 

classification scheme from COSMIC. 401 

(B) Contribution of COSMIC indel signatures to each single OL and neuron. One bar represents 402 

one single cell; cells are ordered according to age with the youngest individuals on the left and 403 

eldest individuals on the right. 404 

(C) Same as (B), but signature exposure is plotted against age for each single cell; each point 405 

represents one cell. Trend lines are mixed-effects linear regression models (see Methods). ID5 406 

and ID8 are annotated as clock-like signatures in COSMIC. 407 

 408 

Figure 4. Oligodendrocyte somatic mutations are associated with inactive chromatin while 409 

neuronal mutations associate with active chromatin. 410 

(A) Representative UMAP plot of scRNA-seq from one normal brain from our cohort (subject 411 

1465) with cell type annotations. 412 

(B) Enrichment analysis of somatic mutations vs. scRNA-seq transcription level. The genome is 413 

divided into 1 kilobase, non-overlapping windows and each window is annotated with an average 414 

gene expression level per cell type; windows that are <80% covered by a gene are discarded. The 415 

remaining windows are classified into 10 deciles, with 1 representing the least transcribed and 10 416 

representing the most transcribed. In each decile, the observed number of somatic SNVs and 417 

indels is compared to a null distribution of mutations obtained by randomly shuffling mutation 418 

positions (see Methods). Enrichment analyses show somatic mutation density vs. transcription 419 

level from each of the cell types identified in our scRNA-seq. 420 

(C-D) Same as (A) for scATAC-seq from the brains of 10 subjects from this cohort.  421 

(E) Somatic mutation density vs. replication timing as measured by ENCODE RepliSeq; lines 422 

represent average enrichment across 15 cell lines. 423 

(F-G) Somatic mutation density vs. 5 epigenetic marks related to gene activity (F) and two 424 

repressive epigenetic marks (G) measured in dorsolateral prefrontal cortex tissue (Roadmap 425 

Epigenomic Project, reference epigenome E073). 426 

(H) Enrichment of somatic mutations vs. functional genomic regions identified by ChromHMM 427 

in reference epigenome E073. Numbers in parenthesis indicate the ChromHMM state number. 428 

(I) Enrichment of somatic mutations vs. active enhancers and promoters identified in Nott et al. 429 
47 for several brain cell types. 430 

See also Figure S3. 431 

  432 
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 433 

Figure 5. Enrichment of mutational signatures in active and inactive chromatin. 434 

Enrichment analysis of somatic mutations attributed to SBS1 (A), SBS16 (B) or SBS5 (C)—435 

rather than total mutation density—vs. the genomic covariates presented in Figure 4. To reduce 436 

noise caused by the smaller number of mutations attributed to each specific mutational signature, 437 

the genome has been divided into three quantiles rather than ten. OLs are not plotted for SBS16 438 

due to noisy measurements; none of these omitted OL SBS16 enrichment tests achieved 439 

significance at the P < 0.05 level. 440 

See also Figure S4. 441 

 442 

Figure 6. Patterns of oligodendrocyte sSNVs correlate with somatic mutation density in 443 

cancer. 444 

(A) Correlation of OL and neuronal sSNV mutation density with cancer mutation density. For 445 

each cell type and cancer type, the genome was tiled with non-overlapping 1 MB bins and 446 

numbers of mutations per bin were tabulated. CNS tumors are colored: CNS-Oligo, 447 

oligodendroglioma, red; CNS-PiloAstro, pilocytic astrocytoma, purple; CNS-GBM, glioblastoma 448 

multiforme, orange; CNS-Medullo, medulloblastoma, black. 449 

(B-C) Mutation density for each tumor type was fit using a linear regression to cell type-specific 450 

single cell chromatin accessibility signals (B) and single cell expression levels (C) using the 451 

same 1 MB bins described in panel (A). For each tumor type and cell type, the fraction of 452 

variance in tumor mutation density explained (R2) by each cell type is shown. 453 

(D) Comparison of OL and neuron somatic mutation rates in frequently mutated cancer genes. 454 

For each tumor type in PCAWG (y-axis), the 100 most frequently mutated genes were 455 

determined. For each tumor-specific set of 100 cancer genes (GT) an odds ratio (OR) is computed 456 

such that OR > 1 indicates that OL mutations are more likely to occur in GT and OR < 1 indicates 457 

neuronal mutations are more likely to occur in GT. Formally, OR = (# OL sSNVs in GT / # genic 458 

OL sSNVs not in GT) / (# neuron sSNVs in GT / # genic neuron sSNVs not in GT). 459 

See also Figure S5. 460 

 461 

 462 

METHODS 463 

 464 

Data and code availability 465 

Newly generated sequencing data for MDA and PTA single-cell WGS of 466 

oligodendrocytes, single-cell ATAC-seq, and single-cell RNA-seq are available on dbGaP, 467 

accession number phs001485.v3.p1. Previously generated scWGS, matched bulk controls, 468 

and scRNA-seq data for individual 1465 are also available for download at dbGaP, accession 469 

number phs001485.v3.p1. Scripts used for analyses in this manuscript are available on 470 

Zenodo (https://doi.org/10.5281/zenodo.7508802). 471 

 472 

Human tissues and DNA samples  473 
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All human tissues were obtained from the NIH NeuroBioBank at the University of 474 

Maryland. Frozen post-mortem tissues from 12 neurologically normal individuals were obtained 475 

as part of a previous study4. Samples were processed according to a standardized protocol 476 

(http://medschool.umaryland.edu/btbank/method2.asp) under the supervision of the NIH 477 

NeuroBioBank ethics guidelines. Bulk DNA was extracted using the QIAamp DNA Mini kit 478 

with RNase A treatment.  479 

 480 

Nuclear sorting and whole-genome amplification 481 

Isolation of single nuclei using fluorescence-activated nuclear sorting (FANS) for NEUN 482 

and SOX10 was performed using a modified version of a previously described protocol53,54. 483 

Briefly, nuclei were prepared by dissecting fresh-frozen human brain tissue previously stored at -484 

80°C, dissolved on ice in chilled nuclear lysis buffer (10mM Tris-HCl, 0.32M Sucrose, 3mM 485 

MgAc2, 5mM CaCl2, 0.1mM EDTA, pH 8, 1mM DTT, 0.1% Triton X-100) using a Dounce 486 

homogenizer. Lysates were layered on top of a sucrose cushion buffer (1.8M Sucrose, 3mM 487 

MgAc2, 10mM Tris-HCl, pH 8, 1mM DTT) and ultra-centrifuged for 1 hour at 30,000rcf. Pellets 488 

containing nuclei were resuspended in ice-cold PBS 1X supplemented with 3mM MgCl2, then 489 

filtered, blocked in PBS 1X supplemented with 3mM MgCl2 and 3% Bovine Serum Albumin 490 

(blocking solution), and stained with an anti-NEUN antibody (Millipore MAB377) previously 491 

used for neuronal nuclei isolation4,53, anti-SOX10 antibody (Novus NBP2-59621R), and DAPI. 492 

Other antibodies targeting the OL population were also evaluated, KLK6 (Bioss bs-5870R) and 493 

CNP (Bioss bs-1000R). Nuclei were washed once with blocking solution, centrifuged at 500rpm 494 

for 5 minutes and resuspended again in blocking solution. Nuclear sorting was performed in one 495 

nucleus per well in 96-well plates and whole-genome amplification was performed using 496 

Primary Template-directed Amplification (PTA) following manufacturer guidelines. Libraries 497 

for sequencing were generated using the KAPA HyperPlus kit (Roche) using dual indexes and 498 

were sequenced across 5 lanes of Ilumina NovaSeq6000 (2x150bp), targeting 20x coverage 499 

(75Gbp)/sample.  500 

 501 

Sorting purity assessment 502 

 Three populations were sorted, DAPI, NEUN+, SOX10+/NEUN-, from one 17y 503 

individual (Supp. Fig. S1). 10x scRNAseq was used and 6,000-10,000 nuclei from each 504 
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population were sorted into individual tubes containing RT mastermix, and immediately 505 

processed for GEM generation, barcoding, and cDNA amplification, following manufacturer 506 

instructions. Each library prep was submitted to paired-end single indexing sequencing on a lane 507 

of Illumina HiSeqX to obtain ~50,000 read pairs per nucleus. Analysis of scRNA seq data was 508 

performed with Loupe Cell Browser 4.q software provided by 10x genomics. Sorting purity is 509 

critical when preforming single-cell whole-genome (scWGS) studies, hence we evaluated purity 510 

of a larger number of cells by scRNA-seq. As a control, evaluation of 3,447 DAPI+ sorted nuclei 511 

obtained from a mix of grey and white matter (PFC) from a 17yr male identified all the cell-512 

types anticipated for this region and with significant presence of OLs following WM 513 

expectation55. The purity of 3,739 NEUN+ sorted nuclei was nearly 100% (Supp. Fig. S1A-C) 514 

with ~1% (40 out of 3,739 nuclei) presence of a PLP1/MBP/MOG+ OL population, and 0.1% (3 515 

out of 3,739 nuclei) of NOSTRIN+ endothelial cells. NEUN sorted nuclei can be broadly 516 

classified into 60% excitatory and 40% inhibitory neurons consistent with recent reports of 517 

excitatory/inhibitory ratios56. Evaluation of 9,227 SOX10+/NEUN- sorted nuclei confirmed 518 

100% mature OLs purity, with the absence of other cell-type markers expression (Supp. Figure 519 

S1A-C). The SOX10+/NEUN- sorted nuclei showed homogenous distribution of classic mature 520 

OL-markers such as PLP1, MOG, MALAT1, among others. Although SOX10 is expressed in all 521 

stages of OL development, including in OPCs, our strategy consistently recovered only mature 522 

OLs. 523 

 524 

10x scRNA-seq 525 

scRNA-seq was performed using the 10X Genomics Chromium Next GEM Single Cell 526 

3� Reagent Kit v3.1. Fresh frozen human brain tissue from the prefrontal cortex of individuals 527 

UMB1465, UMB4638 and UMB4643 was processed to obtain nuclear pellets. Briefly, tissue 528 

was dissociated on ice in chilled nuclear lysis buffer (10 mM Tris-HCl, 0.32 M Sucrose, 3 mM 529 

MgAc2, 5 mM CaCl2, 0.1 mM EDTA, pH 8, 1 mM DTT, 0.1% Triton X-100) using a dounce 530 

homogenizer. Homogenates were layered on top of a sucrose cushion buffer (1.8 M Sucrose, 3 531 

mM MgAc2, 10 mM Tris-HCl, pH 8, 1 mM DTT) and ultra-centrifuged for 1 hour at 30,000 rcf. 532 

Pellets containing nuclei were resuspended in 250 μl ice-cold 1X PBS supplemented with 3 mM 533 

MgCl2, 3% Bovine Serum Albumin (BSA) and 0.2 U/μl RNAse inhibitor (Thermo Fisher 534 

Scientific ref.10777019), then filtered. After filtering, suspension volume was completed at 1 ml 535 
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using the same solution, and nuclei were stained with DAPI before sorting to select for intact 536 

nuclei. Some of the UMB1465 samples were additionally stained with the following antibodies: 537 

two samples with anti-NEUN antibody (Millipore MAB377) for neuron sorting, one sample each 538 

for anti-CX43/GJA1 (Novus Biologicals, FAB7737R-1 00UG AF647), anti-SOX9 (Abcam, 539 

ab196450 AF488) and anti-GFAP (Millipore, MAB3402 AF647) to enrich for glial cells, and 540 

one sample with anti-SOX10 (Novus Biologicals, NBP2-59621 AF647) for oligodendrocyte 541 

sorting. 10,000 to 15,000 single nuclei were sorted for each experiment directly in a tube 542 

containing the 10X RT mastermix, and immediately processed for gel-bead in emulsion (GEM) 543 

generation, barcoding, cDNA amplification and library preparation following manufacturer 544 

instructions. Each library preparation was submitted for paired-end single indexing sequencing 545 

on Illumina HiSeqX or NovaSeq6000 targeting ~50,000 read pairs per nucleus. 546 

 547 

10x scRNA-seq data analysis 548 

scRNA-seq data were demultiplexed using bcl2fastq. snRNA-seq FASTQ files were 549 

then processed using the 10X Genomics cellranger count pipeline for gene expression to 550 

perform alignment to hg19, barcode counting, UMI counting, and generation of feature-barcode 551 

matrices. Cell Ranger filtered count matrices were used for downstream analysis using Seurat 552 

3.057. For each library, we further filtered for cells with > 200 and < 3000 genes and <5% 553 

mitochondrial genes, and genes with <10,000 UMI counts and >3 cells. RNA counts were 554 

normalized using the LogNormalize method and the 2,000 most highly variable features were 555 

identified using the vst method. Data were then scaled by regressing out the percentage of 556 

mitochondrial genes. We then performed non-linear dimensional reduction and clustering. To 557 

remove doublets from our datasets, we ran DoubletFinder58 using optimal parameters as per the 558 

paramSweep function. Finally, cell-type identities were assigned to each cluster in the Uniform 559 

Manifold Approximation and Projection (UMAP) based on expression of known brain cell-type 560 

markers8. 561 

 562 

10x scATAC-seq 563 

Nuclei from 10 individuals (1278, 1465, 4638, 4643, 5087, 5219, 5559, 5817, 5823, 564 

5871) from our aging cohort were obtained from the same brain region as used for single cell 565 
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whole-genome amplification. Tissue was processed as described in nuclear sorting, and nuclei 566 

were re-suspended in diluted nuclei buffer provided by the manufacturer. Nuclei derived from 567 

different individuals were processed for transposition separately, before loading to the 10x 568 

Chromium Controller for GEM generation, barcoding, and library construction, as per 569 

manufacturer instructions. Libraries were submitted for paired-end dual index sequencing on one 570 

flow cell of Illumina S2 NovaSeq6000 (100 cycles) to obtain ~50,000 reads per nucleus. 571 

 572 

10x scATAC-seq data analysis 573 

Sequencing data were demultiplexed using bcl2fastq and mkfastq. 574 

cellranger-atac count v1.1.0 was run separately on the resulting FASTQ files for each 575 

scATAC-seq library (one per individual) with default parameters and the vendor-provided hg19 576 

reference. Results from the individual library analyses (Cell Ranger output files 577 

fragments.tsv.gz and singlecell.csv from each library) were then merged by 578 

cellranger-atac aggr --normalize-depth. scATAC-seq data were analyzed by 579 

Signac v1.1.0 and Seurat v3 following the authors’ instructions. Briefly, the merged Cell Ranger 580 

output was imported via Read10X_h5 and CreateChromatinAssay; analyzed by 581 

RunTFIDF, FindTopFeatures, RunSVD and RunUMAP with LSI reduction; and integrated 582 

with our scRNA-seq to assign cell types via GeneActivity, FindTransferAnchors and 583 

TransferData. 584 

 585 

Single neuron whole genome sequencing data 586 

Sequencing data for 36 PTA-amplified single neurons and matched bulk from the 12 587 

individuals from which OLs were harvested were downloaded from dbGaP accession 588 

phs001485.v3.p1. These BAM files were re-analyzed by SCAN2 jointly with OLs as described 589 

in Somatic mutation calling with SCAN2. For a single additional individual (5171), no PTA data 590 

were generated for either neurons or OLs; in this one case, sequencing data for MDA-amplified 591 

single neurons from the prefrontal cortex and a matched bulk were downloaded from the same 592 

dbGaP accession as the PTA data (see Table S1). SCAN2 somatic SNV calls, indel calls, and 593 

genome-wide burden estimates from 15 previously published PTA-amplified single neurons 594 

from 5 additional neurotypical individuals (individuals 4976, 5451, 5572, 5666, and 5943) were 595 

downloaded from https://github.com/parklab/SCAN2_PTA_paper_2022.  596 
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Somatic mutation calling with SCAN2 597 

SCAN2 v1.1 was run on the 12 individuals from which PTA OLs were collected and 598 

individual 5171 (MDA only). First, a cross-sample panel (required for indel calling with 599 

SCAN2) was built for the 12 individuals with PTA neurons and OLs by running scan2 600 

config with parameters --analysis makepanel --gatk=gatk3_joint; the 601 

GRCh37 human reference genome with decoy hs37d5 (--ref), dbSNP v147 common (--602 

dbsnp) and 1000 Genomes phase 3 SHAPEIT2 phasing panel (--shapeit-refpanel) as 603 

described in ref. 10; one --sc-bam argument for each PTA BAM; and one --bam argument 604 

for each of the 12 matched bulk BAMs. After generation of the cross-sample panel, SCAN2 v1.1 605 

was run for each of the 12 individuals and individual 5171. For each individual, all PTA OLs 606 

(and MDA OLs for individuals 1278, 5871, 5171, and 5657) and PTA neurons (MDA neurons 607 

for individual 5171) were analyzed together in a single SCAN2 run. scan2 config was run 608 

with the parameters --analysis=call_mutations --gatk=gatk3_joint --609 

abmodel-samples-per-step=20000 --abmodel-refine-steps=4 --610 

abmodel-n-cores=10 and the same GRCh37 reference, dbSNP and phasing panels used 611 

above. The cross-sample panel created above was specified via the --cross-sample-panel 612 

parameter. Finally, SCAN2 mutation signature-based rescue was run in two batches, one for 613 

PTA neuron and one for PTA OL calls, using scan2 config --analysis=rescue --614 

rescue-target-fdr=0.01 followed by scan2 rescue. Mutation signature-based 615 

rescue was not run on MDA neurons or OLs. For neurons only, VAF-based SCAN2 calls (i.e., 616 

excluding signature-rescued SCAN2 calls) from the 15 previously analyzed PTA single neurons 617 

(see Single neuron whole genome sequencing data) were added to the rescue process via --618 

add-muts. 619 

Total mutation burden estimation and aging models 620 

SCAN2 provides estimates of the total somatic SNV and indel burden in each sample 621 

(i.e., the estimated total number of mutations per cell adjusted for sensitivity of mutation calling). 622 

These estimates were obtained from each SCAN2 output RDA file by first loading the file in R, 623 

then running object@mutburden[[“snv”]]$burden[2]. Indel burdens were recovered 624 

by replacing “snv” with “indel”. To account for variability within and between individuals, 625 

mixed-effects linear models were used to estimate the aging-related rates of somatic SNV and 626 
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indel accumulation. These models were fit by the R lme4 package using 627 

lmer(genome.burden ~ age*celltype + (1|individual)), where celltype 628 

is either oligo or neuron, individual is one of the 12 individual IDs for which PTA OLs 629 

were available (i.e., excluding individual 5171) and age is the numeric age of individual. 630 

Confidence intervals were estimated by confint. For linear mixed models, statistical tests of 631 

significance comparing each coefficient, interaction term and intercept to a null hypothesis of 0 632 

were calculated by the lmerTest R package, which uses a t-test based on the Satterthwaite 633 

approximation. Throughout the text, these t-tests are referred to as LMM t-tests.  634 

SnpEff annotation 635 

Both VAF-based and mutation signature-rescued SCAN2 somatic mutation calls were 636 

annotated for functional impact via SnpEff version 4.3t using the hg19 database. Reported 637 

functional impacts were taken from the first ANN field in the SnpEff annotated VCF. When 638 

computing the fraction of mutations with LOW, MODERATE, and HIGH impact (Figure 1D), 639 

duplicate and clustered mutations were removed as described in Somatic mutation enrichment 640 

analysis. 641 

 642 

Somatic mutation enrichment analysis 643 

Enrichment analyses following the methodology described in ref. 10 were carried out to 644 

determine whether somatic mutations accumulate preferentially in certain areas of the genome. 645 

First, somatic mutations were filtered to remove duplicates and clusters of mutations in single 646 

cells. For exact duplicate mutations (i.e., same position and base change or indel), if the duplicate 647 

mutations all occur in cells from a single individual (suggesting a clonal mutation), a single 648 

representative mutation was retained; otherwise, if the duplicate mutations span multiple 649 

individuals (suggesting artifacts), all mutations were discarded. Clusters of mutations, defined as 650 

any mutation within 50 bp of another mutation in the same single cell, suggest underlying 651 

alignment artifacts or structural variants and were removed before enrichment analysis. 652 

Duplicate and clustered mutations were determined separately for MDA and PTA mutation calls. 653 

For MDA OLs only, all SCAN2 mutation calls from the 20 OLs from infant brains were 654 

additionally filtered prior to duplicate and cluster filtering. These were removed because the 655 

mutation burden of young OLs is too small to sufficiently outnumber MDA technical artifacts. 656 
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The only enrichment analysis using MDA OL calls is the genic region enrichment analysis in 657 

Figure S2C. 658 

Next, the genome was divided into regions based on a single covariate (described in more 659 

detail below) and the number of somatic mutations in each region R was compared to the number 660 

of mutations in R after the locations of the mutations were randomly permuted across the 661 

genome. The permutation process was repeated 10,000 times and the final enrichment value ER 662 

was given by dividing the number of observed somatic mutations in each region R by the average 663 

number of permuted mutations in R. For enrichment analysis of mutational signatures, the above 664 

steps were followed, except: (1) somatic mutations called by SCAN2’s mutation signature-based 665 

rescue method were not used and (2) rather than counting the number of mutations in each region 666 

R, the set of mutations in R was fit to the reduced COSMIC SBS or ID catalog (see COSMIC 667 

signature catalog activity thresholds reduction) by non-negative least squares (using 668 

lsqnonneg from the pracma R package) and the exposure value for each signature was used 669 

in lieu of mutation counts. To obtain two-sided tests of enrichment significance for each region 670 

R, a permutation test strategy was used. Enrichment values ��

��� were computed for each of the 671 

10,000 permutations i and a P-value was derived from the fraction of permutation sets with more 672 

extreme enrichment values than the observed mutations. To avoid P-values of 0, a minimum of P 673 

= 0.0001 was enforced, i.e., 674 

�� � max �1/10000, ��: �log ��

���� � |log ��|��10,000 �. 
To define regions R for enrichment analysis, a subset of the genome with anomalous 675 

sequencing depth was first identified and removed from subsequent analyses. The human 676 

reference genome GRCh37 with decoy sequences hs37d5 was divided into non-overlapping 677 

windows of 100 bp and the average sequencing depth across all PTA neurons and OLs as output 678 

by SCAN2 (file path: 679 

path/to/scan2_output/depth_profile/joint_depth_matrix.tab.gz) was 680 

computed for each 100 bp window. Windows with low average depth (<6 reads averaged across 681 

all PTA cells) or excessive average depth (in the top 2.5% of average depth) were classified as 682 

anomalous. Genomic regions were next derived from non-quantitative genomic covariates 683 

(genes, Figure S2D; exons, introns, and intergenic spaces, Figure 1C; ChromHMM classes, 684 
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Figure 4F; and cell type-specific promoters and enhancers, Figure 4G) and quantitative 685 

covariates (GTEx transcription levels, Figure S3A; scRNA-seq transcription levels, scATAC-seq 686 

accessibility, RepliSeq replication timing and histone mark levels, Figures 4B,D-G). For non-687 

quantitative covariates, regions R were defined by the union of genomic intervals for each unique 688 

covariate state (e.g., all exons or all regions annotated as ChromHMM state 1) and anomalous 689 

windows were subtracted from these unions. For quantitative covariates, the genome was first 690 

tiled with non-overlapping 1 kbp windows (corresponding to 10 100 bp windows from the 691 

anomalous sequencing depth analysis). 1 kbp windows containing >2 anomalous sequencing 692 

depth windows were discarded. For each remaining 1 kbp window i, a single quantitative value 693 

Vi was derived for each covariate in a covariate-dependent manner (described in detail for each 694 

covariate below). The distribution of values Vi were then discretized into n = 10 (for enrichment 695 

analysis of total mutation burden) or n = 3 quantiles (for enrichment analysis of mutation 696 

signatures) and each window i was assigned its quantile rank Qi. Finally, a region RQ was defined 697 

for each quantile Q = 1…n by taking the union of windows with rank Q. Genomic regions and 698 

the resulting enrichment analyses were always performed using one covariate at a time. 699 

Genomic covariates for enrichment analysis 700 

Gene regions. GENCODE genes version 26 was downloaded from 701 

https://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/releas702 

e_26/GRCh37_map 703 

ping/gencode.v26lift37.annotation.gtf.gz. A single region was defined for 704 

each protein coding gene using GTEx’s transcript collapse script 705 

(https://raw.githubusercontent.com/broadinstitute/gtex-706 

pipeline/master/gene_model/collapse_annotation.py) and used for the per-707 

gene enrichment analysis in Figure S2D. Exonic, intronic and intergenic regions were then 708 

derived from the GENCODE GTF records for the same set of genes. When multiple records 709 

overlapped a single locus, status was prioritized as follows: CDS > UTR > exon > intron > 710 

upstream/downstream > intergenic. Finally, loci classified as CDS, UTR or exon were classified 711 

as exonic, intron as intronic, and all other classes as intergenic. 712 

ChromHMM chromatin states. 15-state ChromHMM annotations were downloaded for 713 

epigenome ID E073 (dorsolateral prefrontal cortex) from 714 

https://egg2.wustl.edu/roadmap/data/byFileType/chromhmmSegmentat715 
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ions/ChmmModels/coreMarks/jointModel/final/E073_15_coreMarks_mne716 

monics.bed.gz. 717 

Promoters and enhancers for flow sorted brain cell types. Active promoter and enhancer 718 

elements were extracted from Supplementary Table 5 of ref. 58 available at 719 

https://www.science.org/doi/suppl/10.1126/science.aay0793/suppl_720 

file/aay0793-nott-table-s5.xlsx. Duplicate lines in these tables were removed 721 

prior to analysis. 722 

GTEx transcription levels. Median gene expression levels from 54 tissue types were downloaded 723 

from the GTEx project at 724 

https://storage.googleapis.com/gtex_analysis_v8/rna_seq_data/GTE725 

x_Analysis_2017-06-05_v8_RNASeQCv1.1.9_gene_median_tpm.gct.gz. For 726 

each tissue type, the median transcription level of each gene G was mapped to the genome by 727 

applying it over G’s collapsed transcript (see Gene regions above). Only 1 kbp genomic 728 

windows with >=80% coverage by gene transcripts were retained. If multiple genes overlapped 729 

the same window, the maximum TPM value was used for the window. 730 

scRNA-seq transcription levels. Cell type-annotated gene-expression matrices for each scRNA-731 

seq library were concatenated column-wise and average expression levels for each gene were 732 

calculated for each cell type. Gene names were then matched to the GTEx gene model and 733 

transcription levels for each cell type were mapped to the genome as described above for GTEx 734 

transcription levels. 735 

scATAC-seq accessibility. ATAC-seq transposition events output by cellranger-atac (file: 736 

fragments.tsv.gz) were first separated by cell type (see 10x scATAC-seq data analysis) 737 

and then converted to BED format. The BED file of fragments for each cell type was then 738 

converted to bedGraph format using bedtools genomecov -bga and finally to bigWig 739 

format by bedGraphToBigWig. The bigWig signal files were then mapped to the 1 kbp 740 

genome tiles described in Somatic mutation enrichment analysis by 741 

bigWigAverageOverBed. 742 

Replication timing. WaveSignal RepliSeq bigWigs were downloaded from 743 

http://hgdownload.cse.ucsc.edu/goldenpath/hg19/encodeDCC/wgEncod744 

eUwRepliSeq/wgEncodeUwRepliseq{cell_line}WaeSignalRep1.bigWig for 745 

15 cell_lines (all available at the time of writing): BG02ES, BJ, GM06990, GM12801, 746 
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GM12812, GM12813, GM12878, HUVEC, HeLa-S3, HepG2, IMR90, K562, MCF-7, NHEK 747 

and SK-N-SH. The bigWig signal files were then mapped to the 1 kbp genome tiles described in 748 

Somatic mutation enrichment analysis by bigWigAverageOverBed; quantile values were 749 

then reversed so that Q = 1 corresponded to the earliest replication timing quantile. 750 

Histone marks. bigWig signal files representing ChIP-seq fold-change versus a no-IP control 751 

were downloaded for 13 Roadmap reference epigenomes annotated as brain tissue from 752 

https://egg2.wustl.edu/roadmap/data/byFileType/signal/consolidat753 

ed/macs2signal/foldChange/{epigenome_ID}-754 

{histone_mark}.fc.signal.bigwig for 7 histone_mark values H3K27ac, 755 

H3K27me3, H3K36me3, H3K4me1, H3K4me3, H3K9ac and H3K9me3. The bigWig signal 756 

files were then mapped to the 1 kbp genome tiles described in Somatic mutation enrichment 757 

analysis by bigWigAverageOverBed. 758 

COSMIC signature catalog activity thresholds and reduction 759 

To reduce the possibility of overfitting by signatures that may not be active in our cell 760 

types, all signature fits were conducted on a subset of the COSMIC v3.1 SBS and ID catalogs. 761 

The catalogs were reduced by several heuristics designed to remove signatures with low 762 

likelihood of activity in our data. The first heuristic is a step-forward procedure in which each 763 

step i determines the single COSMIC signature that minimizes the residual (resid.norm) of 764 

the non-negative least-squares fit  (lsqnonneg) to the (signature channel) × (sample) input 765 

matrix compared to the signatures present in step �� � 1�. At each step, this reduction in residual 766 

is compared to the residual using 0 signatures (i.e., the norm of the input matrix) to determine the 767 

percent reduction of the signature selected at each step i. The second heuristic is designed to find 768 

evidence of age-related accumulation of each signature. First, the (signature channel) × (sample) 769 

input matrix is fit by lsqnonneg to the entire COSMIC SBS or ID catalog to determine 770 

exposure levels Ei,j for each sample i and signature j. For each signature j, a linear model Ei,j ~ 771 

agei is fit and the significance of the test for slope=0 (t-test) is recorded. Finally, the significance 772 

values for all signatures tested are corrected for multiple hypothesis testing by R’s p.adjust 773 

method using Holm’s correction. The third heuristic measures the percent contribution Pj of each 774 

signature j to the total spectrum; i.e., �� � ∑ ��,�� / ∑ ��,��,� . These three heuristics are computed 775 

separately for neurons and OLs using VAF-based SCAN2 somatic mutation calls (to avoid 776 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 14, 2023. ; https://doi.org/10.1101/2023.01.14.523958doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.14.523958
http://creativecommons.org/licenses/by-nd/4.0/


signature biases of signature-rescued SCAN2 calls). For each set of heuristics, signature j is 777 

retained if either: heuristic (1) exceeds a 50% reduction in the residual; or if heuristic (2) < 0.01 778 

after multiple hypothesis correction and heuristic (3) exceeds 1% of the total spectrum. The final 779 

set of retained signatures is the union of signatures retained in either neurons or OLs. 780 

Analysis of related oligodendrocyte pairs 781 

Shared somatic SNVs were determined for each pair of single cells within each 782 

individual. A shared sSNV was defined as a SCAN2 call present in at least one of the two cells 783 

and for which 2 or more mutation supporting reads appear in the other cell. Private mutations 784 

were SCAN2 calls that: (1) did not meet the shared mutation criteria and (2) were supported by 0 785 

reads and a total depth of 6 or greater in the paired cell. These heuristics identified two pairs of 786 

oligodendrocytes with exceptionally high numbers of shared sSNVs (5559-Oligo-5 and 5559-787 

Oligo-8, PTA-amplified OLs from individual 5559; 5657-GliaLC-4-F11 and GliaLC-4-G10, 788 

MDA-amplified OLs from individual 5657). 789 

Because the pair of OLs from individual 5657 were MDA-amplified, it was necessary to 790 

remove artifacts associated with MDA, which follow a specific SBS signature termed Signature 791 

B10. For signature analysis, removal of this signature was achieved by adding Signature B to the 792 

reduced COSMIC catalog before fitting by lsqnonneg and then discarding exposures to 793 

Signature B. Although PTA induces a much lower artifact burden than MDA, a similar 794 

correction was performed to remove PTA artifacts from the spectra presented in Figure 2D,E: the 795 

PTA artifact signature was added to the reduced COSMIC catalog, mutations were fit by 796 

lsqnonneg and finally the reconstructed spectrum was created by summing COSMIC 797 

signatures, weighted by their exposures, and excluding the PTA artifact weights. 798 

To estimate time to the most recent common ancestor (MRCA) split, several corrections 799 

to account for sensitivity and shared vs. private misclassification were required. To quantify 800 

shared vs. private misclassifications, we applied the shared and private criteria for somatic SNVs 801 

to germline heterozygous SNPs (hSNPs) known to be present in the individual, which should 802 

always be shared between single cells from the same individual. The number of shared sSNVs 803 

was then multiplied by (1 + fraction of hSNPs classified as private). The number of private 804 

sSNVs was then reduced by the amount added to the shared sSNV count. The opposite error, a 805 

private sSNV classified as shared, should occur rarely since it requires a random artifact to 806 
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intersect with a true mutation; we thus assumed this rate to be approximately 0. For the pair of 807 

MDA OLs, the number of private sSNVs was reduced by the fraction of the private sSNV 808 

spectrum attributed to the MDA artifact Signature B after fitting to the COSMIC SBS catalog 809 

with Signature B. SCAN2’s estimate of the total mutation burden (which accounts for mutation 810 

calling sensitivity) was also reduced by the Signature B exposure fraction and SCAN2’s calling 811 

sensitivity re-estimated by S = (# SCAN2 calls) / adjusted total burden. The final corrected 812 

shared sSNV and private sSNV counts reported in Figure 2D were computed by dividing by S. 813 

The time to MRCA was estimated by counting mutations forward from the initial zygote (i.e., 814 

using the number of corrected shared sSNVs) and backward (i.e., using the number of corrected 815 

private sSNVs). In each case, the corrected number of mutations was converted to a time in years 816 

by first subtracting the intercept of our OL sSNV aging model and then dividing by the slope of 817 

the OL aging model. 818 

Cancer mutation density 819 

PCAWG cancer somatic SNV and indel mutation catalogs were obtained in MAF format from 820 

the ICGC portal 821 

(https://dcc.icgc.org/releases/PCAWG/consensus_snv_indel). 822 

Hypermutated tumors within each tumor type were identified by Tukey’s method and mutations 823 

from these tumors were removed. Next, cancer mutations for each sample were mapped to the 824 

100 bp windows used for detecting anomalous sequencing depth (described in Somatic mutation 825 

enrichment analysis) and the count of mutations in each window was then normalized by the 826 

total number of mutations in that sample. Finally, a track representing the mutation density for 827 

each tumor type was created by summing normalized window counts across samples from the 828 

same tumor type and written in bigWig format via rtracklayer’s export.bw function. 829 

Because 100 bp or 1 kbp windows contain too few mutations for meaningful correlation 830 

analyses with our neuron and OL somatic mutations, the per-tumor bigWig signal files with 100 831 

bp resolution were mapped to a non-overlapping 1 Mbp genome tiling by 832 

bigWigAverageOverBed. 1 Mbp windows with anomalous sequencing depth were then 833 

removed following the same requirements for the 1 kbp tiling windows described in Somatic 834 

mutation enrichment analysis. Total neuron and OL mutation counts were also determined over 835 

these 1 Mbp windows and correlations between somatic mutation density in OLs, neurons and 836 

each tumor type were shown in Figure 6A. A similar downscaling of signals from 1 kbp 837 
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resolution to 1 Mbp resolution via bigWigAverageOverBed was required for comparing 838 

cancer mutation densities to scRNA-seq and scATAC-seq signals. 839 

 840 

Cancer gene odds ratio analysis 841 

 Since the sizes of individual genes are usually too small for detecting mutation 842 

enrichment or depletion with our catalog of somatic mutations from OLs and neurons, we 843 

created a larger genomic region by considering sets of genes. PCAWG mutations (without 844 

hypermutated samples, as described in Cancer mutation density) were mapped to genes by 845 

SnpEff as described above. For each tumor type, a list of genes ordered by number of somatic 846 

mutations intersecting the gene was constructed. For each tumor type, 50 progressively larger 847 

genomic regions corresponding to the union of the top 10, 20, …, 500 genes were created. In 848 

each region R, the rates of OL mutations and neuron mutations impacting the region were 849 

compared using the odds ratio 850 

��� � # oligo mutations in � / # oligo mutations not in �# neuron mutations in � / # neuron mutations not in �. 
Thus, ORR > 1 implies a preference for OL mutations in the genes represented in R and ORR < 1 851 

implies a preference for neuronal mutations in R. Figure 6D presents odds ratios for the top 100 852 

genes in each tumor type and the full analysis is presented in Figure S5. 853 

  854 
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