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Abstract

The mammalian cerebral cortex shows functional specialization into regions with distinct neuronal compositions, most strikingly in
the human brain, but little is known in about how cellular lineages shape cortical regional variation and neuronal cell types during
development. Here, we use somatic single nucleotide variants (sSNVs) to map lineages of neuronal sub-types and cortical regions.
Early-occurring sSNVs rarely respect Brodmann area (BA) borders, while late-occurring sSNVs mark neuron-generating clones
with modest regional restriction, though descendants often dispersed into neighboring BAs. Nevertheless, in visual cortex, BA17
contains 30-70% more sSNVs compared to the neighboring BA18, with clones across the BA17/18 border distributed asymmet-
rically and thus displaying different cortex-wide dispersion patterns. Moreover, we find that excitatory neuron-generating clones
with modest regional restriction consistently share low-mosaic sSNVs with some inhibitory neurons, suggesting significant co-
generation of excitatory and some inhibitory neurons in the dorsal cortex. Our analysis reveals human-specific cortical cell lineage
patterns, with both regional inhomogeneities in progenitor proliferation and late divergence of excitatory/inhibitory lineages.

Keywords: Somatic mutations, visual cortex, cortical development, lineage tracing, spatial genomics, single-cell transcriptomics,
excitatory neurons, interneurons, inhibitory neurons

Introduction

Pattern formation in the human cerebral cortex has fascinated
neuroscientists for more than a century. Cortical areas, which
were originally defined by cytoarchitectonic and myeloarchi-
tectonic differences encapsulated in Brodmann Area (BAs) des-
ignations (Brodmann, 1909) over a century ago, show dra-
matic changes in relative cellular components across functional
boundaries in human cortex (Brodmann, 1909; Budday et al.,
2015). Recent investigations of large human cohorts with MRI
measures of function and connectivity (Glasser et al., 2016)
have largely confirmed the existence of dozens of functional
specializations that correlate with BAs, identified dozens more,
and validated their relevance for complex cognitive and be-
havioral tasks (Binkofski and Buccino, 2004; Hanakawa et al.,
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2002). Diverse cortical areas appear to arise by a complex inter-
play of patterning forces, as exemplified by the primate visual
cortex. Early regional specification of cortex relies on gradi-
ents of secreted factors and transcription factors (Ypsilanti and
Rubenstein, 2016), without explicit requirement for axonal in-
put (Cadwell et al., 2019). However, later differentiation of spe-
cific regions shows roles for extrinsic cues. For example, pre-
natal removal of visual thalamic inputs in monkeys causes a re-
duction in the extent of the primary visual cortex (BA17), along
with a shift of the histologically identifiable boundary between
the primary visual cortex and secondary visual cortex (BA18)
(Dehay et al., 1996, 1989), suggesting that extrinsic factors can
also regulate cortical area specification, cell identity, and con-
nectivity (Dehay et al., 1989). Thus, both intrinsic and extrinsic
variables help specify the cytoarchitecture and cell types in the
primate visual system (Dehay et al., 1996, 1989; Rakic et al.,
1991). Direct studies of cell lineage in animal models have
given variable results about potential roles of lineage in regional
and cell-type specification. In the mouse, radial glia (which
produce excitatory neurons of the cortex) have been proposed to
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produce neurons that are preferentially connected to each other,
distributed in both the superficial and deep layers of the mouse
cortex (Rakic, 1988; Gao et al., 2014) and sharing some func-
tional properties (Rakic et al., 1991; Gao et al., 2014; Li et al.,
2012; Ohtsuki et al., 2012). Such an observation may suggest
that cellular lineage contributes to specifying cortical circuits.
In contrast, other studies have suggested stochasticity in mouse
cortical neurogenesis, with pyramidal neuron clones showing a
wide range of sizes and laminar configurations, including deep
layer-restricted cortical lineages (Yu et al., 2009). However, the
extent to which lineages in different cortical areas may exhibit
features relating to the local cytoarchitecture and leading to het-
erogeneous progeny is unknown.

To address the questions on the spatial outcomes and iden-
tities of cells produced by human cerebral cortical progeni-
tor cells, we utilized somatic mutations as endogenous mark-
ers of cellular relatedness. Lineage and clonal analyses using
somatic single-nucleotide variants (sSNVs) identified in post-
mortem human brain samples have shed light into the earli-
est events of brain development and cell type relationships in
the prefrontal cortex, all pointing to a large degree of clonal
dispersion (Bizzotto et al., 2021; Lodato et al., 2015; Huang
et al., 2020; Breuss et al., 2022). Here, to describe human-
specific cortical lineage patterns, we characterized the spatial
distribution of cellular clones across the human cerebral cor-
tex using sSNVs and integrated this data with transcriptomic
information about cells in each clone. We confirmed earlier
reports of widespread clonal dispersion across human cortex,
with even late-rising mosaic variants present across multiple
regions. However, we also discovered regional inhomogene-
ity in clonal structure superimposed on this dispersion, notably
at the BA17/18. Surprisingly, we also observed the frequent co-
generation of excitatory and inhibitory neurons at late stages of
neurogenesis (Delgado et al., 2021), providing the first demon-
stration that these mixed clones are common in vivo.

Results

The primary visual cortex harbors 30-70% more sSNVs than
the adjacent secondary visual cortex

We first sought to identify and validate clonal mosaic sS-
NVs in the cortex before tracking them across multiple brain re-
gions and using them to reconstruct cellular lineages (Fig. 1A).
As described before (Bizzotto et al., 2021; Dou et al., 2020),
we discovered sSNVs by applying MosaicForecast (a machine
learning algorithm we developed (Dou et al., 2020)) to very
high-coverage (210X) whole-genome sequencing (WGS) data
of bulk DNA extracted from four neurotypical individuals. In
each individual, we profiled grey matter of three regions: BA9
within the prefrontal cortex (PFC) and two areas from the oc-
cipital lobe (primary visual cortex, BA17, and secondary visual
cortex, BA18; Fig. 1B; Table S1.1; Methods).

Across all four individuals, we found that BA17 consistently
showed more sSNV than the adjacent BA18, with BA9 also
exceeding BA18 in 3/4 samples (Fig. 1C,D; Fig. S1A-D). We
focused on the differences between adjoining BA17 and BA18
first, estimating the ratio of sSNVs detectable in BA17 versus

BA18 at different alternate allele fractions (AAF) after control-
ling for the sensitivity to detect sSNVs in deep bulk WGS data
(Methods). We found that BA17 contains 30-70% more sS-
NVs than BA18 at <5% AAF (equivalently, at mosaic fractions
(MFs) of <10%; Fig. 1A), suggesting that the excess of sS-
NVs in BA17 over BA18 arises near the start of and persists
throughout cortical neurogenesis. In contrast, sSNVs at AAFs
>10%, likely arising in early embryonic cell divisions before
the formation of brain16 were distributed equally in all three
regions (Fig. 1C; Fig. S1C). The greater number of sSNVs in
BA9 over BA18 in three of the brains (UMB4638, UMB4643,
and UMB5575; Fig. S1A-C), may be reflecting the frontal cor-
tex’s large size, distance from the occipital cortex, and rela-
tively late generation, all of which would lead to larger sSNV
counts (Kolk and Rakic, 2022). In addition to the consistently
greater number of sSNVs detected in BA17 versus BA18, we
found that BA17-restricted variants were present at higher av-
erage AAFs than BA18-restricted variants (Fig. 1D). Variants
shared between the two regions did not have significantly dif-
ferent average AAFs in one region versus the other (Fig. S1D).
Region-restricted variants were detected at AAFs of ≈1.5-2.5%
and shared-region variants at ≈6-15%, consistent with region-
specific variants arising later than shared variants.

Amplicon panel sequencing (>10,000X; Methods) con-
firmed the >1.5x higher number of sSNVs in BA17 compared
to BA18. We selected a set of 155 total sSNVs originally de-
tected in BA17 and/or BA18 (Table S1.1-1.5). Of the 155 sS-
NVs, 138 (89%) were validated in the original discovery site
(ODS) (Table S1.2). More than half of the variants at <3%
AAF (<6% MF) were specific to the brain (Fig. S1E; Table
S1.3), in line with previously-published analyses showing that
most brain-restricted SNVs appear at AAFs of <1% with some
appearing at 1-5% AAF (Bizzotto et al., 2021). Our overall
sSNV validation rate was as expected from MosaicForecast-
based discovery (Dou et al., 2020; Rodin et al., 2021) (Table
S1.3-1.5).

The two consistent trends—BA17 containing more sSNVs
than BA18, and BA17-restricted variants occurring at higher
AAFs than BA18-restricted variants—suggest a fundamental
difference in the clonal structures of these two neighboring
regions. Assuming that our sSNVs are neutral to clonal se-
lection, the higher number of sSNV in BA17 could reflect a
larger progenitor pool than in BA18, and would presumably
also require that some progeny remain mostly regionally re-
stricted. The greater AAFs of BA17-restricted variants could
arise from BA17 gaining its region-restricted progenitors ear-
lier than BA18 and thus having more time to clonally expand
and show sSNVs at higher cell fractions. These patterns are
consistent with previous observations in non-human primates
of a higher density of neurons in adult primary compared to sec-
ondary visual cortex (Collins et al., 2010; Dehay and Kennedy,
2007; Rockel et al., 1980) and constrained radial migration
across the border during development (Li et al., 2012; Ohtsuki
et al., 2012; Yu et al., 2009). Studies of non-human primates
also suggest that the proliferation rate is greater for progenitors
underlying the incipient primary visual cortex compared to the
secondary visual cortex (Dehay et al., 1993; Smart et al., 2002;
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Figure 1: Regional differences in sSNV counts between cortical areas. (A) Top: Experimental outline for clonal sSNV analysis, with each analysis corresponding
to a relevant figure in this paper. Bottom: A schematic comparison of the resolution of different sequencing technologies used in this study (blue) for variants present
at different mosaic fractions (and corresponding alternate allele fraction) in tissue. 30X WGS (not used for this study) is shown in grey for comparison. (B) DNA
was prepared and sequenced from the frontal (BA9) and occipital cortex (BA18 and BA17). Tracings of the occipital cortex section show sampling of adjacent
cortical areas: primary visual cortex, BA17 (A) indicated by the stria of Gennari (white line); and secondary visual cortex, BA18 (B). (C) Ratio of the number of
variants between the adjacent regions (BA18 and BA17) per alternative allele frequency (AAF) range. Calculations were performed across all 4 brains (UMB4638,
UMB4643, UMB5575, and UMB5580). The “control” distributions were generated from the ratios of the simulated numbers of mutations drawn from each region
if the corresponding variants were present at the average of the AAFs at which they were discovered in BA17 and BA18. (D) Bootstrap estimates of the AAFs of
variants specific to either BA17 or BA18. The significance of AAF estimates is assessed by the t-test (***: p ¡ 1e-3; ****: p ¡ 1e-4).

Lukaszewicz et al., 2005).

Inferring the timing of cortical patterning using single-cell lin-
eage tracing

To infer a more detailed timeline of cortical spatial pattern-
ing, we generated lineage trees from 122 brain-restricted SNVs
profiled by panel sequencing in 1131 single cells taken from
BA17, BA18, and BA9 (as an outgroup) (Methods; Fig. S2A-
D). To estimate the time for all observed cells to develop from
their most recent common ancestor (MRCA), we computed the
coalescent time of the population (Methods; Supplemental
Methods; Fig. S2E). Each variant arises at some point during
the population’s development, and the cell in which the vari-
ant first arises will yield progeny forming a subpopulation in
our observed cells. Thus, the coalescent time of a subpopu-
lation can be used to estimate the time-of-origin (TOO) of its
corresponding variant. Using published values for the number

of new cells generated during human fetal neurogenesis (Ack-
erman, 1992), we converted each variant’s coalescent time to
an estimate of chronological time. We present each variant’s
TOO as the number of weeks that have elapsed since the MRCA
of the entire corresponding lineage (”post-MRCA week,” or
PMW).

We estimated that analyzed neurons in each brain formed
their lineages over 17 weeks (14.8 weeks for UMB4638 and
18.7 weeks for UMB4643; Fig. S2D). This timespan corre-
sponds roughly to the length of human cortical neurogenesis
(gestational weeks [GW] 10-25) (Stepien et al., 2021; Malik
et al., 2013; Sidman and Rakic, 1973). If our MRCAs first
arose at or near the start of neurogenesis (i.e., PMW0 =GW10),
then our lineages would track developmental events occurring
throughout most of neurogenesis. Our cells were sampled from
54-68 million cells within which the mutations studied in each
tree may be found, with 7 new mutations arising in the pop-
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Figure 2: Timelines of variant occurrence across the visual and prefrontal cortices as estimated from single-cell lineage trees and coalescent models. (A)
Radial plot showing the time-of-origin (TOO) of variants inferred by a coalescent model applied to single-cell lineages. For each brain, a single-cell lineage tree
was built on 580 cells and 40-50 variants. Each variant is represented by a pie chart sized by the number of cells carrying the variant and sliced by the breakdown
of regions where these cells were found. If one variant occurs right before another within the same lineage (i.e., on consecutive branches of the lineage tree), then
an arrow is drawn from the first to the second variant’s pie chart. Rings on the radial plot correspond to time in weeks; variants with later TOOs are placed more
outward. Variants are arranged in different sectors (I-V), each of which is determined by the overall regional identity of the cells carrying the variants. Sectors are
arranged from top (variants have more anterior destinations in the cortex) to bottom (more posterior destinations). For visual clarity, the insets at right show some of
the early-rising variants. (B) Associations between estimated TOO and regional restriction as quantified by the regional restriction statistic (RRS) for each variant
found in 2 or more cells in its corresponding lineage tree. Panels from top to bottom: The number of cells carrying each variant, the TOO estimates (in weeks)
with 95% credible intervals, and the RRS computed for each variant (see Methods). The RRS range for germline variants is plotted as the gray band encompassing
RRS=1 as a reference. Confidence intervals were constructed from bootstrapped estimates of RRS taken from sampling cells in clades of the lineage tree. (C) A
schematic of the two main patterns that describe how variants (each belonging to a different sector) are dispersed across the cortex.

ulation during each generation (Fig. S2E). Our lineage analy-
sis provides estimated TOOs for variants, the order of variants
along successive branches in the lineage tree, and the observed
regional distributions of cells carrying a subpopulation-defining
variant. With this information, we constructed timelines of vari-
ants that track how descendants of cortical clones spread out
across the prefrontal and occipital cortex (Fig. 2A; Methods).

We grouped variants into five clusters distinguished by how
cells carrying variants are spread out across the three regions.
First, 18 variants across the two brains end up restricted to BA9
by PMW2 (Fig. 2A, Cluster I), suggesting that a subset of
clones is isolated to the prefrontal cortex early in neurogen-

esis. Second and third, 22 observed variants end up primar-
ily within the occipital cortex, either mostly restricted to BA17
(Fig. 2A, Cluster V) or split across BA17 and BA18 (Fig. 2A,
Cluster IV) by PMW4-6. Nine of these 22 occipital variants
were also detected at low cell fractions in BA9 at or before
PMW6, suggesting that the exclusion of these variants from the
frontal cortex is not complete before then. These three patterns
represent the allocation of clones between the occipital and pre-
frontal cortexes at different times. The fourth and fifth patterns
represent the exclusion of clones away from BA17. We ob-
served 41 variants excluded from BA17 over PMW1-3 that end
up restricted to either BA18 by PMW6 (Fig. 2A, Cluster III)
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or to BA9 by PMW9 (Fig. 2A, Cluster II) separately from and
more gradually than the early-BA9 variants (Fig. 2A, Cluster
I). Given that cells in both clusters restrict to BA9, it is plausi-
ble that Cluster II may represent an intermediate state of Clus-
ter I and that sampling more cells carrying sSNVs grouped into
Cluster I may reveal more BA18/9 intermediate subclones.

For each variant, we defined its ”regional restriction statis-
tic” (RRS) (Methods) to quantify whether cells sharing it are
spread out around a subset of regions (<1) or restricted to one
region (>1), with germline or early-mosaic variants receiving
≈1 (equal representation across all regions). Over time and at
increasingly lower cell fractions, sSNVs restrict to one of the
three regions (RRS>1) (Fig. 2B). Despite the trend, two sSNVs
at low cell fractions and arising between PMW5-10 remained
distributed across two of the regions and depleted in one re-
gion (RRS<1). Although these variants resemble the pattern
of highly-dispersed interneuron clones derived from the basal
forebrain that have been described in other species (Cadwell
et al., 2019; Subramanian et al., 2019; Tsai et al., 2012), their
very low cell fractions make it difficult to capture enough cells
carrying these variants to define the cell type associated with
them.

In summary (Fig. 2C), using lineage trees and coalescent
models, we infer that early cortical progenitors follow one of
two paths. First, they may restrict to BA9 between PMW2-
9 (GW12-19), with a possible transition through BA18 that
leaves behind BA18-restricted descendants by PMW6 (GW16)
(I/II and III). Second, progenitors may restrict themselves to the
visual cortex and distribute across the BA17/BA18 border (IV
and V). The exclusion of these clones from the frontal cortex is
not complete until PMW6, and only after PMW10 (GW20) do
these clones remain split between BA17 and BA18 (IV). BA17-
restricted cells are descended from these posterior-restricting
clones. From these paths, we infer that the distinction between
frontal and posterior progenitors is made by PMW6. While a
clone’s regional restriction generally increases with time and
decreasing cell fraction, complete spatial restriction may not
fully occur until late in the lineage (PMW10). We also predict
that progenitors restricting towards BA17 will yield descendant
cells with a more posterior orientation to cells descended from
BA18-restricting progenitors, some of which will also show re-
cent ancestry with cells in BA9.

Low mosaic sSNVs disperse widely in the frontal cortex.
Our results so far suggest a complex picture of how cortical

clones can follow different routes towards populating the visual
and prefrontal cortexes. To gain a more comprehensive picture
of how cortical clones disperse over the course of development,
we profiled a subset of sSNVs in a broader set of cortical ar-
eas and in non-cortical tissues. We conducted MIPP (Multiple
Independent Primer PCR)-seq (Doan et al., 2021), which is ca-
pable of detecting a variant down to 0.1% MF (at >99% sen-
sitivity), well below the 2% MF threshold of 210X WGS. We
analyzed 59 sSNVs (discovered from WGS and where probes
could be successfully designed) across 25 cortical regions and 5
non-cortical regions (Fig. 3A, Fig. S3A, and Table 1). We pre-
viously identified clonal clades in UMB4638’s frontal cortex

using four of these sSNVs (labeled as “A-early,” “C-early,” “B-
early,” and “B-later”) (Huang et al., 2020). With MIPP-seq we
could track these and other rarer sSNVs across a wider area, al-
lowing us to delve deeper into the clonal structure of the frontal
cortex (Fig. 3B). We refer to MFs of ⪅1% as “ultra-low” mo-
saic and 1-3% as ”low” mosaic (Fig. 3,Fig. 4, Fig. S4 and Table
3.1).

MIPP-seq analysis showed a subset of clones with wide re-
gional dispersion even at low MFs. Low and ultra-low mosaic
sSNVs discovered within BA9 showed wide distribution across
the frontal cortex and even in the temporal cortex of the same
hemisphere but were typically not detected in the occipital cor-
tex. For example, in UMB4638, chr9:26385808 was detected
in two adjacent cortical areas: BA9 (0.22% MF at ODS) and
BA10 (1.02% MF). Similarly, in UMB4643, chr2:230199483
is detected all throughout the frontal cortex beyond BA9. Two
other variants in UMB4638 (chr2:240009733, chr2:59535794),
originally discovered at low MFs in BA9 (0.77% and 2.85%, re-
spectively), were detected as far away as the temporal lobe (the
insula and BA20/21/22/37/41/42) at MF≤1.41% (Fig. 3B). In
our WGS analysis, we found evidence for a significant number
of region-specific sSNVs in BA9 present in >1% of total cells
(Fig. S1C). By following some of these variants with MIPP-
seq, we demonstrate that even late-rising variants initially dis-
covered in BA9 may be dispersed into neighboring and distant
territories. The frontal cortical lineages marked by these vari-
ants may be significantly intertwined with those from other re-
gions.

Low mosaic sSNVs in visual cortex tend to distribute asymmet-
rically at the BA17/BA18 border

In contrast to their wide dispersion across frontal cortex,
low and ultra-low mosaic sSNVs (≤3.1% MF) are asymmet-
rically spread across the BA17/18 border, showing stronger
regional or posterior-lobe restriction in BA17 compared to
the adjacent BA18. For example, three sSNVs discovered in
BA17 of UMB4643 with MFs of 1.1-3.1% (chr16:75725649,
chr4:15384075, chr21:26365585) were detected only in BA17,
whereas a single sSNV (chr7:35766878; 0.77% MF) was de-
tected only in BA18 (Fig. 4A). Although the sample size is
small, these observations are consistent with the results ob-
served in WGS in which BA17 variants showed more region-
restriction than BA18.

On the other hand, some low mosaic sSNVs (≤2.14% MF)
were not limited to their original discovery sites in WGS at
BA17 or BA18 but crossed over into the neighboring regions.
In UMB4638, chr17:64478804 was originally found in BA17
(2.14% MF) but also seen in BA18 (0.21% MF) and BA19
(0.30% MF), all in the occipital lobe (Fig. 4A). Two variants in
UMB4638, chrX:86680485 and chr2:226043457, were discov-
ered in BA17 (present at respective MFs of 0.86% and 1.54%)
but also detected in BA18 (respective MFs of 0.10% and 0.84%)
(Fig. 4B). These observations are consistent with the inferences
from our lineage trees suggesting significant intermingling of
occipital lobe lineages even late into cortical development.

The MIPP-seq data also captured a prediction initially made
in our lineage analysis: the spread of BA18-discovered sS-
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Figure 3: Clonal sSNVs identified in frontal cortex (BA9) distribute across cortical regions, with modest regional restrictions, at low mosaic fraction. (A)
The brain regions that were sampled for studies of the spread of sSNVs using MIPP-seq. Cortical lobes from which Brodmann areas/cortical structures were taken
are colored (frontal, red; parietal, yellow; temporal, green; and occipital, purple; non-cortical, black). Regions separated by slashes (BA3/1/2 and BA41/42) were
studied together. “A-early,” “C-early,” “B-early,” and “B-later” are four variants that we previously had studied in the frontal cortex for UMB463818. (B) The
cortical distribution of a sSNV originally detected in BA9 (red rectangle) from UMB4638 (top) and UMB4643 (bottom). Tissues are arranged (left to right) in
anterior to posterior cortical section ordering, and are color highlighted based on the scheme in (A). Non-cortical tissues are listed on the right. Mutations are ranked
from broadest to least present across the tissues, followed by average mosaicism across samples.

NVs in more anterior regions of the cortex compared to
those containing BA17-discovered sSNVs. Whereas sSNVs
originally discovered in BA17 or BA18 (MFs 1.61–7.98%)
were detected in the occipital, parietal, and/or temporal cor-
tices at maximum MFs of 3.34% (Fig. 4B), the domain of
BA18-discovered variants appeared more anterior to the do-
main of BA17-discovered variants. sSNVs originally discov-
ered in BA18 (e.g., chr17:10286416 and chr4:140684064) at
low MFs (1.11%-1.60%) were detected at lower MFs (0.15-
0.41%) in posterior frontal lobe (BA4 and BA6, Fig. 4B).
On the other hand, one sSNV originally discovered in BA17
(chr12:21352176) at a low MF (1.61%) was found beyond the
occipital cortex down to 0.11% MF across the temporal and
parietal cortex but at regions more posterior to the boundary of
BA18-originating variants (BA37, BA41/42, BA7, BA31). Ad-
ditionally, this specific sSNV was not detected in the frontal

lobe, unlike similarly rare sSNVs from BA18. This observation
replicates the inference made in our lineage analysis (Fig. 2A)
that BA18-discovered clones may have more anterior spread
across the cortex (as in Cluster II) than BA17-discovered clones
(as in Clusters IV/V).

In contrast to the overarching trend of low-mosaic sSNVs
showing modest regional restriction, a subset of low-mosaic
sSNVs (at ≤2.81% MF) showed no evidence for regional re-
striction at all, appearing all across the hemisphere but not
in subcortical and non-cortical brain tissues, a pattern remi-
niscent of inhibitory interneuron clones described in animal
models (Cadwell et al., 2019; Subramanian et al., 2019; Tsai
et al., 2012). In UMB4643, some sSNVs showed an irregu-
lar, spotty pattern within the cortex, non-cortical brain tissue,
and the putamen (chr9:102348854 and chr13:57928576; av-
erage 0.42–1.14% MF across tissues, Fig. 4). These variants
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Figure 4: The spatial distributions of the rarest sSNVs initially discovered within the occipital cortex. The presence of select sSNVs initially discovered in
BA17 or BA18 within the original discovery site (purple rectangles) and across adjacent and distant cortical regions. sSNVs show either regional restriction (A) or
distinct patterns of lobe restriction after crossing the BA17/18 border (B). Tissue and mutations from UMB4638 and UMB4643 were assessed and are colored as in
Fig. 3.

represent exceptions to the gradual regional restriction of most
variants, although determining their corresponding cell types
(e.g., whether they represent inhibitory neuron clones) would
require deep targeted capture of these extremely low frequency
clones.

In summary, tracking a handful of variants with MIPP-seq
replicates three trends seen in our WGS and lineage tree anal-
ysis: sSNVs discovered in BA17 tend to remain regionally re-
stricted, sSNVs discovered in BA18 tend to intermingle with

regions as far as in the frontal cortex, and sSNVs discovered
in BA9 are more likely to be restricted to the anterior end of
the brain while dispersing widely within the frontal lobe. Al-
though MIPP-seq does not establish overarching trends as do
our WGS and lineage analysis; it highlights nuances in the
clonal structure of the cortex through a deep dive of a subset of
variants. MIPP-seq analysis over the entire cortex further sug-
gests that for the rarest low mosaic clones from BA9, BA18,
and BA17; lower-MF sSNVs show more restricted presence in
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cortical areas or specific lobes in the cerebral cortex (Breuss
et al., 2022; Cadwell et al., 2020). However, the detection of
low and ultralow-MF clonal sSNVs in adjacent and distant re-
gions suggests that human cortical lineages do not remain lat-
erally constrained throughout most of development.

Low mosaic sSNVs in visual cortex tend to distribute asymmet-
rically at the BA17/BA18 border

Although coverage of sSNVs in single-nucleus (sn) RNA-
seq and snATAC-seq is generally sparse (Bizzotto et al., 2021;
Petti et al., 2019), the presence of pre-specified variants can
be verified in a fraction of cells. We collected snRNA-seq
and snATAC-seq data from 10X Chromium libraries of DAPI-
sorted or NeuN+-enriched FACS-sorted cells from BA17,
BA18, and BA9 across UMB4638 and UMB4643 and de-
termined cell types using markers determined by the Allen
Brain Atlas39 (Methods). We retained 72,839 nuclei across 15
snRNA-seq experiments and 9,125 nuclei across 2 snATAC-seq
experiments (Fig. 5A,B). We sought to profile 350 candidate sS-
NVs in UMB4638 and 306 in UMB4643, including those used
for lineage tracing as well as additional variants subjected to
amplicon validation (Methods; Table S1.1-1.5). Each cell had
on average 1-4 reads of coverage per site (Fig. S5A-B), and the
overall cell fraction of a given variant correlated with its aver-
age WGS AAF across regions (Fig. S5C). Although only 15%
of our assessed variants had sufficient read coverage to produce
at least one read of a mutant allele (Fig. S5D), we found variants
in each major cell type in our dataset (Fig. S5E) and identified
numerous subsets of cells that shared sSNVs (Fig. S5F).

Strikingly, a number of these low-mosaic sSNVs are found
in both excitatory and inhibitory neurons (EN and IN; Fig. 5C),
two distinct neuronal subtypes that have been reported to arise
from anatomically distinct progenitors in rodents. Existing
studies in mice suggest that INs migrate into the cortex after
arising from the medial or caudal ganglionic eminences (MGE
and CGE) deep within the developing brain, separately from the
dorsal cortical progenitors of the ENs closer to the outside sur-
face (Lim et al., 2018; Bandler et al., 2017). However, several
reports suggested a dorsal source of INs in the human neocortex
(Al-Jaberi et al., 2015; Clowry, 2015; Cunningham et al., 2013;
Fertuzinhos et al., 2009; Jakovcevski et al., 2011; Letinic and
Rakic, 2001; Letinic et al., 2002; Petanjek et al., 2009; Rakic
and Zecevic, 2003; Radonjić et al., 2014), and a recent report
using viral lineage tracing of human progenitor cells in rodent
xenografts (Bandler et al., 2021) suggested that cortical ventric-
ular zone progenitors produce proportions of 67-85% excitatory
to 4-11% INs (Delgado et al., 2021). If some INs and ENs share
a direct dorsal progenitor, then these neurons would likely share
sSNVs present at lower cell fractions, given that dorsal progen-
itors are only a subset of the cells in the developing brain.

To systematically analyze the relatedness of ENs and INs to
each other as well as to other brain cell types, we measured
the AAFs of sSNVs shared across cell types. To differenti-
ate the early- and late-diverging cell types, we reasoned that
the AAF of variants shared in two cells will be higher if the
cells diverged earlier in developmental time (if multiple vari-
ants are shared, we take the minimum AAF) (Fig. 6A). Using

low AAF (<5%) variants that are likely to be informative for
brain-specific hierarchies, we inferred the relatedness of neu-
rons to basic cell types in the brain (Fig. S6A). We observe only
one variant shared between microglia and excitatory neurons at
a low AAF ( 5% AAF) but dozens more amongst neurons and
macroglia (astrocytes, oligodendrocytes, and OPCs) at lower
AAFs (1-2%) (Fig. 6B). We were surprised to find sSNVs at
low AAFs (<1%) shared not only within ENs (E/E) or within
INs (I/I) but also between ENs and INs (E/I). We confirmed
that both non-mutant and mutant UMIs were expressed for each
variant in both neuronal subtypes, confirming that there is no
confounding due to transcript dropout and that we have suffi-
cient coverage and sensitivity (Fig. S6B). The minimum AAF
of E/I sSNVs was lower than that of sSNVs shared between
neurons and different macroglial subtypes. As macroglia may
arise from the same radial glial progenitors as neurons (Rakic,
2009; Noctor et al., 2001) , the lower AAFs of E/I sSNVs com-
pared to those shared between neurons and macroglia suggest a
common ancestor of E/I neurons present later than that of neu-
rons and macroglia. Expanding our view to all sSNVs shared
amongst neurons, we found that E/E, I/I, and E/I sSNVs showed
surprisingly similar AAF distributions (Fig. 6C). Overall, our
analysis indicates early divergence of neurons from microglia,
late divergence from macroglia (astrocytes, oligodendrocytes,
or OPCs), and a later divergence amongst neuronal subtypes,
including E/I clones.

If late E/I progenitors exist in vivo in the cortex, they may
be the source of low-AAF E/I sSNVs and produce the two
neuronal types at consistent ratios. To further investigate this
hypothesis, we estimated the ratios of excitatory to inhibitory
neurons sharing low-MF E/I sSNVs. Using Empirical Bayes
estimation (Methods), we found this ratio (E/I) to be approxi-
mately 10:1 (EN:IN of 56.9%:5.40%; 95% CIs of 39.0-69.1%
and 4.14-7.6%, respectively; Figure S6C,6D), surprisingly con-
sistent with ratios of these cells seen in xenograft experiments
(Delgado et al., 2021). Inhibitory neurons sharing variants
with excitatory neurons showed diverse gene expression pro-
files, predominantly those similar to VIP-expressing, PVALB-
expressing, or SST-expressing inhibitory neurons as deter-
mined in the Allen Brain Atlas (Hodge et al., 2019) (Fig. 6D,
Fig. S6D-E). From 32 E/I sSNVs at <4% AAF (¡8% MF), we
found that some E/I clones are regionally restricted (as some
ENs have been thought to be), while others are broadly dis-
persed across the cortex (as some INs have been thought to be)
(Fig. S6D). We could not definitely establish if inhibitory neu-
rons expressing MGE or CGE markers differed in the MFs of
E/I sSNVs (Fig. S6F).

Inferring the timing of specialized neuron types.
In addition to studies of E/I clones, analyzing the AAFs

of sSNVs shared amongst neuronal subtypes allowed for the
closer analysis of EN-exclusive clones. We identified 41 E/E
variants at <1% AAF in multiple cortical layers and detected
in no other cell types (Fig. 6F). We also found two variants at
<1.5% AAF shared between one excitatory upper-layer neuron
and other excitatory neurons but no other cell types (Fig. 6F).
Given their presence in the same upper-layer neuron, these two
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Figure 5: Low-mosaic sSNVs are shared by both excitatory and inhibitory neurons. (A and B) Low-dimensional UMAP projections of 72,839 nuclei from
snRNA-seq and 9,125 nuclei from snATAC-seq, both collected from 10X Chromium assays. Major cell types (A) and more specific neuronal subtypes (B) are
colored. (C) Five select sSNVs at low mosaicism (¡3%) and the cell types in which they are detected. Top panels: cells are marked in light blue if they express
the corresponding sSNV’s locus. Middle panels: cells are marked in black if they express the mutant allele; otherwise, they are colored by their assigned cell type.
Bottom panels: bar plots marking the number of cells in each type that express the mutant allele.

variants likely occurred within the same population of excita-
tory neurons, but the low per-cell coverage from Chromium as-
says means that not all excitatory neurons have enough cover-
age to report the variant.

For one of the upper-layer EN sSNVs and two of the E/I sS-
NVs, we could estimate TOOs due to overlaps with our lineage
tree (Fig. S6H). The upper-layer EN sSNV (chr8:42336821)
had a TOO of PMW3.5 (≈GW13.5, if the MRCAs of the sin-

gle cell lineage trees are assumed to have arisen near the on-
set of neurogenesis at ≈GW10). Despite its relatively early
TOO, this variant remains largely restricted to BA9 at a low
MF with a much scarcer presence in BA18 and undetectable
in BA17. This particular variant may support the presence of
upper-layer restricted progenitors in the human cortex yielding
spatially restricted neurons, an observation first seen in mouse
models (Franco et al., 2012; Gil-Sanz et al., 2015; Eckler et al.,
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Figure 6: Properties of low-mosaic excitatory and inhibitory clones in the dorsal cortex. (A) A schematic depiction of the motivation behind the minimum-AAF
statistic, used to assess if a variant shared between two cell types occurred in a progenitor before an early or late divergence of the cell types. (B) Number and
minimum AAF (from region-averaged WGS) of variants found detected across cell types annotated within the 10X data. Estimates were aggregated across all
variants detected with 10X data from both brains. (AC WGS AAF distributions of variants found detected in excitatory neurons, inhibitory neurons, and microglia.
(D) Empirical Bayes estimates of the proportion of excitatory and inhibitory neurons found in subsets (as depicted in (B)). Only subsets with ¿ 10 cells were
analyzed. (E) UMAP annotations of inhibitory neurons (marked in red) sharing variants at ¡2% AAF (¡4% MF) with excitatory neurons (not marked), along with the
expression level (number of UMIs) of different types of inhibitory neuron markers. (F) UMAPs with variants marked for variants found exclusively shared amongst
excitatory neurons (all layers) (left panel) and for two variants shared between an upper-layer neuron and subsets of all-layer excitatory neurons (right panel).
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2015). The first E/I sSNV (chr3:115983749) had an estimated
TOO of PMW9.5 (≈GW19.5), was mapped to a BA18/BA9-
distributed population in the single-cell lineage tree, and shows
a similar regional distribution in WGS data. The second E/I
sSNV (chr3:65583407) had an estimated TOO of PMW10.7
(≈GW20.7) and was also mapped to BA9 and BA18 in the
lineage tree, but it was present at higher MFs across all three
regions. This discrepancy may arise from the more unbiased
sampling of tissue in bulk WGS and the greater potential for
single-cell dropout from single-cell sampling. These timing es-
timates of E/I sSNVs may hint at a late generation time for ENs
and INs from common dorsal progenitors.

Targeted DNA/RNA analysis further defines cell type relation-
ships

To confirm patterns of divergence of excitatory and inhibitory
lineages, we used Parallel RNA and DNA analysis after Deep
sequencing (PRDD-seq) as a complementary method of tar-
geted analysis of multiple RNA markers of cell type and mul-
tiple sSNVs within the same single cells (Huang et al., 2020)
(Fig. S7A). We first applied PRDD-seq on variants previously
identified from BA9 (“Clade A” (Huang et al., 2020)) and in-
tegrated the data with topographic mapping from MIPP-seq
(Fig. 3B). Early variants in Clade A (A1-4) mapped to both
excitatory and inhibitory cell clusters, including the four eval-
uated inhibitory neuron subtypes (Fig. 7A-B and Fig. S7).
Lower-mosaic sSNVs in Clade A (A5) are increasingly re-
stricted towards excitatory neurons in upper layers (Fig. 7A
and Table S6.1), consistent with our findings of upper-layer
excitatory neurons sharing low-MF sSNVs with only other
excitatory neurons (Fig. 5D-E). Within Clade A, sSNV A5b
(chr17:48665916) represents a later-occurring mutation (Table
S6.1) that is limited to later-born excitatory neurons in middle
and upper cortical layers (Fig. 7B) but nonetheless disperses
across >5.2 cm in the frontal cortex across (in rostro-caudal
direction) BA10, BA9, BA8, and BA6 (Fig. 7C). Restriction
of A5b to middle- and upper-layer excitatory neurons matches
the inside-out sequence of excitatory neuronal cell types in the
cerebral cortex seen in several animal models, in which deep
layer neurons are formed first, and the most superficial exci-
tatory neurons are formed last (Harwell et al., 2015; Mayer
et al., 2015). Overall, these observations confirm our previous
inferences that late-occurring variants arising after generation
of layer 6 neurons can nonetheless spread widely across many
centimeters and Brodmann areas.

We then applied PRDD-seq to 14 sSNVs of UMB4638 and
UMB4643 for which we could successfully design PRDD-seq
primers. We could confidently isolate, genotype, and clas-
sify the cell types for neurons carrying 12 of these sSNVs, 9
of which also had cortex-wide topological information from
MIPP-seq. Analysis of BA17 from UMB4638 and UMB4643
showed several topographically restricted sSNV recovered in
excitatory neurons but also detectable in inhibitory popula-
tions (Fig. 7D and Table S6.2). A sSNV (chr21:26365585)
restricted to a single cortical area (BA17) was positively
genotyped in 17 excitatory and 5 inhibitory neurons, with
5 other identified neurons not further assignable to subtype

(Fig. 7D). Similarly, sSNV chr17:64478804 (≤2.14% MF) was
detected in all occipital lobe areas (BA17, BA18, and BA19)
and in 11 neurons (4 excitatory, 1 inhibitory, and 6 neurons
not further classified; Figure 7D). Other sSNVs detectable
in excitatory neurons (chr16:75725649, chr8:31845755, and
chr2:226043457) genotyped in various excitatory neuron sub-
sets were found in other unassignable neurons. Low mosaic
SNVs showing widespread or non-regional or lobe-restricted
patterns (chr11:64308248; chr11:117793752; chr13:57928576;
chr7:110060640; and chr2:29700911) were also commonly
seen in excitatory neurons (Fig. 7D), but as can be seen with
chr11:117793752 (Fig. 7D and Table S6.2) may contain in-
hibitory neurons, confirming that sSNVs marking clones dis-
persing across several cortical boundaries at low MF repre-
sent inhibitory neurons, but the pattern reinforces our obser-
vation that some excitatory neuron clones may also disperse
across cortical boundaries. Since inhibitory neurons are both
less common and expected to be extremely widely dispersed,
our single-cell methods are relatively insensitive to sampling
clonally related inhibitory neurons. Nonetheless the consistent
co-occurrence of E/I sSNV with two methods supports the pres-
ence of a shared E/I progenitor relatively late in neurogenesis
in the dorsal cortex, consistent with previous xenograft lineage
tracing (Wichterle et al., 1999).

Discussion

By using somatic mutations as markers of cell lineage in the
human cerebral cortex, we find major aspects of cell lineage
that are quite unlike anything described in animal models to
this point. Three methods—deep WGS, coalescent analysis
of single cell lineages, and MIPPseq analysis of cortical dis-
persion—all suggest that low mosaic sSNVs (MFs <1%) dis-
perse widely across cortex in general, but show prominent non-
uniformities across the BA17/18 border. BA17 harbors more
regionally-restricted sSNVs than BA18 (Fig. 1C), likely re-
flecting regional differences in proliferation, and clonal inter-
mingling appears somewhat restricted across this border. In
addition, two methods combining DNA analysis with single-
cell transcriptomics suggest that widely dispersed clones con-
tain many excitatory neurons and reveal clones of E/I neurons
likely arising from the dorsal proliferative region in vivo (Cai
et al., 2013; Radonjić et al., 2014; Letinic et al., 2002).

Clonal patterns at the BA17/18 border

Our data mirror other findings in primates that the BA17/18
border shows somewhat limited clonal dispersion. Studies of
non-human primates show a sharp change in patterns of prolif-
eration in the subcortical proliferative zones beneath this bor-
der, as well as relatively constrained patterns of radial migra-
tion of BA17 neurons (Dehay et al., 1993; Smart et al., 2002;
Lukaszewicz et al., 2005; Cortay et al., 2020). In single-cell
tracing studies of the E78 subplate in macaques that underlies
BA17/18, BA17 showed more radial trajectories of migrating
supragranular neurons than BA18 (Cortay et al., 2020), in ad-
dition to a unique dependence on visual inputs for its proper
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Figure 7: PRDD-seq further reveals the clonal topography and relatedness of excitatory and inhibitory neuron subtypes. (A-B) PRDD-seq-evaluated
sSNVs across three clades in UMB4638 distribute throughout different excitatory and inhibitory subtypes, with restriction to middle- and upper-layer excitatory
neurons seen in later-occurring sSNV. (A) Low-dimensional representation of the transcriptomic profiles of single neurons carrying sSNVs that were previously
characterized in lineage studies of BA9 (Clade A18). Neurons were collected and analyzed with PRDD-seq were found to carry sSNVs from successive generations
within Clade A (earliest, A1; latest, A5) and their marker profiles are used to project them (marked as solid points) onto a t-SNE representation of snRNA-seq data
from UMB4638 and UMB4643 (Methods). Clusters of excitatory and inhibitory neuron subsets are indicated. (B) Cell type breakdown for sSNVs in A5. sSNV
A5 is found in middle- and upper-layer excitatory neurons but is mostly absent from deep layer excitatory neurons and from inhibitory neurons. (C) Example of a
late-occurring A5 sSNV (A5b) that was identified in BA9 (underlined), is limited to middle-upper layer excitatory neurons, and marks a neuronal clone distributed
widely (≥5.2 cm) and at ¡1% MF across frontal cortical areas. The topographic distance between the furthest sampled and detected cortical areas is a minimum
total distance of 5.2 cm, but likely 6.2 cm since one cortical section was unavailable for sampling and measurement. (D) Regional presence of ultra-low mosaic
sSNVs and the neuronal subtypes harboring them as assessed by MIPP-seq. PRDD-seq reveals mosaic sSNVs in UMB4638 (brown) and UMB4643 (gray) limited to
BA17 (chr21:26365585, A¿G, chr16:75725649, C¿G), BA17 and BA18 (chr2:226043456, A¿G), occipital lobe (chr17:64478804, C¿T) or occipital and neighboring
parietal lobe areas (chr2:29700911, G¿A). The sSNVs are mainly found in excitatory neurons, though some are found in inhibitory neurons as well consistent with
a dorsal source of some inhibitory neurons 20. PRDD-seq analysis was conducted completed in single neurons isolated from BA17 from each individual.
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development. The frequently identified high neuronal density
observed in BA17 compared to BA18 and other cortical areas
(Greig et al., 2013; Collins et al., 2010) may reflect the observed
higher tendency for sSNVs identified in BA17 to be restricted to
BA17, compared to BA18 or BA9 where sSNVs are not as com-
monly restricted to the region where they were discovered. To
reconcile our data with these findings, we propose that in addi-
tion to dispersion patterns seen elsewhere in the cortex, clones
at the BA17/18 border also show BA17-restricted increase in
proliferation leading to clonal expansion, potentially regulated
by signals from thalamic fibers, and likely involving predomi-
nantly upper-layer neurons. A larger amount of local prolifera-
tion of neuronal precursors would give rise to a higher neuronal
density and increased clonality marked by sSNVs detectable
at our MF threshold. Alternatively, our data are also consistent
with a model in which the border unevenly allocates progenitors
between BA17 and BA18 and restricts BA17-derived clones
from crossing over into the rest of the cortex, while BA18-
derived clones are not as restricted and thus end up as far as
the frontal cortex.

Widespread clonal distributions of excitatory neuron clones in
cerebral cortex

Our findings confirm earlier reports of broad dispersion and
intermingling of clonal progeny in the human frontal and lateral
cortex (Lodato et al., 2015; Breuss et al., 2022; Bizzotto et al.,
2021; Huang et al., 2020; Coorens et al., 2020; Evrony et al.,
2015; Lavdas et al., 1999; Fasching et al., 2021), but they show
for the first time that these widely dispersed clones include exci-
tatory neurons. While previous studies have shown that specific
excitatory neuron clones intermingle within a single cortical
column (Huang et al., 2020), we observe that excitatory neuron
clones present in all cortical layers typically encompass most
or all of the cortical surface. Excitatory neuron clones disperse
across multiple cortical areas at MFs as low as <1%, especially
in frontal lobe, although previous limited analyses have sug-
gested that later clonal events can show more limited dispersion
across cortex at MFs <<1% (Evrony et al., 2015). Although the
latest-generated sSNVs are hard to recover, we have also found
that sSNVs at <1% MF with topographic restriction are often
limited to neurons in middle-to-upper cortical layers, although
confirming this finding will require analyzing more samples.
Nonetheless, this extreme level of clonal intermingling for even
rare, late-rising excitatory clones has major consequences for
models of clonal structure in humans (Li et al., 2012).

The wider dispersion of excitatory neuron-generating clones
in human cortex contrasts with the more coherent clonal pat-
terns reported in the rodent cortex (Gao et al., 2014; Ware et al.,
1999; Llorca et al., 2019), though limited reports in larger-
brained mammals like ferret and nonhuman primate hint at
wider clonal dispersion in these species as well (Ware et al.,
1999; Reillo et al., 2017; Gertz and Kriegstein, 2015; Reid
et al., 1997). It is unclear for now whether the human reflects
a scaled-up version of similar mechanisms in non-primates or
shows newly evolved mechanisms. One implication of the
widespread clonal dispersion in humans is that pathogenic so-
matic mutations affecting human neuronal clones, such as seen

in focal cortical dysplasia, may be scattered widely across the
cortex, potentially beyond the borders of visible cortical lesions
caused by these mutations (Fauser et al., 2004, 2015; Hamiwka
et al., 2005).

In vivo evidence for common dorsal progenitors of cortical ex-
citatory and inhibitory neurons

We identified sSNVs shared by excitatory and inhibitory in-
terneurons (E/I variants) in spatially restricted patterns that are
characteristic of dorsally derived excitatory clones. This ob-
servation suggests a dorsal source of cortical interneurons in
vivo, as has been suggested before and shown recently for hu-
man cells grown as xenografts (Delgado et al., 2021). This
pattern contrasts sharply with mouse, where interneurons ap-
pear to be exclusively derived from subcortical sites (Miyoshi
et al., 2010; Wonders and Anderson, 2006). While interneu-
ron formation certainly occurs at subcortical sites in humans
(Hansen et al., 2013; Ma et al., 2013), dorsal sites seem to be
a significant source of them as well. Past studies suggest that
the global E/I ratio in humans is approximately 7:3, compared
to 3:1 in marmosets (non-human primates) and 8.5:1.5 in mice
(Loomba et al., 2022; Bakken et al., 2021; Džaja et al., 2014).
The 10:1 ratio of E/I cells in mixed E/I cortical clones we ob-
served suggests that a substantial minority of the human cortex
INs are dorsally derived. The absence of similar information
from other mammalian species leaves open whether this dor-
sal interneuron source is a primate-derived addition, or whether
mice selectively lost this dorsal source. Additionally, while we
interpret our data as suggesting a dorsal origin for some in-
terneurons, it does not exclude a ventral progenitor migrating
from the ganglionic eminences into the cortex before produc-
ing E/I progeny. Future work must efficiently discover new sS-
NVs in interneurons to trace the separate lineages of dorsal and
ventral progenitors.

Limitations

Lineage studies in humans remain limited by small sample
sizes, reflecting the lack of high-throughput, droplet-type meth-
ods to allow simultaneous analysis of DNA and RNA in single
cells. The vastness of the human cortex also remains an obvious
challenge for systematic description. Our retrospective method
also does not allow direct determination of where neurons are
formed, only their final location. Furthermore, present meth-
ods to identify sSNV, such as deep WGS, or single cell WGS,
have far higher sensitivity to identify sSNV that occur early in
development, prior to neurogenesis, and much lower sensitiv-
ity to identify the “late branches” of neurogenesis which are in
principle the most informative to examine regional and cell type
decisions. This lack of sensitivity especially impacts the analy-
sis of interneuron lineages, which in animal models are highly
dispersed (Letinic and Rakic, 2001; Radonjić et al., 2014; Har-
well et al., 2015; Mayer et al., 2015; Wichterle et al., 1999),
and which likely correspond to the outlier sSNV that we ob-
serve with cortex-wide dispersion at very low cell fraction. The
tremendous clonal dispersion of these rarer cell classes means
that sSNV marking them will be present at exceedingly low
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cell fractions that will challenge the sensitivity of present meth-
ods. Systematic application of newer duplex sequencing meth-
ods (Abascal et al., 2021; Xing et al., 2021) promise to improve
sensitivity for these late-occurring variants.
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Methods

Resource Availability
Lead Contact

Further information and requests for resources and
reagents should be directed to and will be fulfilled
by the lead contact, Christopher A. Walsh (christo-
pher.walsh@childrens.harvard.edu).

Materials Availability
This study did not generate new unique reagents.

Data and code availability
Code used for bioinformatic analysis described in Figures 1,

2, 5, and 6 and their associated supplemental content can be
found at https://github.com/parklab/spatial sampling analysis.
MosaicForecast can be found at https://github.com/parklab/
MosaicForecast. Raw sequencing data from UMB4638 and
UMB4643 is available from dbGaP under accession num-
ber phs001485.v2.p1 and from the NIMH Data Archive 111.
Raw sequencing data from UMB5575 and UMB5580 and raw
data from newly collected snRNA-seq from UMB4638 and
UMB4643 will be made available through dbGaP. All muta-
tions and their validation status, single-cell lineage informa-
tion, and cell-type annotations will be made available through
the Supplementary Materials, which will be released upon ac-
ceptance and publication. The code pertaining to the Ex-
cel/Python/Perl workflow to analyze MIPP-seq results and pro-
duce the content of Figures 3 and 4 can be found at https:
//github.com/soniankim/brain-clone-mosaic.

Any additional information required to reanalyze the data re-
ported in this paper is available from the lead contact upon re-
quest.

Experimental Materials and Methods for variant discovery
and validation
Processing of human tissues and DNA samples

Human tissues were obtained from the NIH NeuroBioBank
at the University of Maryland Brain and Tissue Bank.
Fresh-frozen post-mortem tissues from two neurologically
normal individuals were used in this study: UMB4638 (a
15-year-old female) and UMB4643 (a 42-year-old female).
UMB4638 died from motor vehicular injuries and UMB4643
died from cardiovascular disease. Both individuals had
no known neurological or psychological diagnoses at the
time of death. Both individuals were obtained as part of
previous studies in our lab (Bizzotto et al., 2021; Lodato
et al., 2015). All tissue samples were prepared accord-
ing to standardized protocols (https://www.medschool.
umaryland.edu/btbank/Researchers/Tissues-Collected
and https://www.medschool.umaryland.edu/btbank/
Medical-Examiners-and-Pathologists/Minimum-Protocol)
under the supervision of the NIH NeuroBioBank ethics
guidelines. Brodmann area identification and sampling were
completed by the NIH NeuroBioBank at the University of
Maryland Brain and Tissue Bank.
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Cortical samples were biopsied from the left hemisphere of
both individuals. For initial variant calling in both individuals,
bulk samples were biopsied from the PFC and occipital lobe,
specifically BA17 and BA18. Likewise, single cells for variant
calling were isolated from PFC (UMB4638: coronal section
3; and UMB4643 coronal section 4). For downstream experi-
ments, including validation experiments, related to these three
areas, biopsies from BA9 (representing PFC), BA17, and BA18
were used.

Bulk DNA was extracted from tissues using the lysis buffer
from the QIAamp DNA mini kit (Qiagen; Cat. 51304) with
proteinase K digestion and RNase A treatment, followed by a
phenol-chloroform extraction and alcohol precipitation.

Single nuclei were isolated by fluorescence-activated nuclear
sorting (FANS) using an anti-NeuN antibody as a neuronal nu-
clei marker (Millipore, MAB377). Nuclei were lysed on ice in
alkaline conditions, and whole-genome amplified using MDA,
as previously described (Bizzotto et al., 2021; Lodato et al.,
2015; Evrony et al., 2015; Dean et al., 2002).

Human sample preparation
We received tissue biopsies from two neurologically normal

individuals, UMB4638 and UMB4643, from the NIH Neuro-
BioBank. These samples have been used in prior publications
for some limited variant discovery, WGS, and clonal analysis
(Bizzotto et al., 2021; Lodato et al., 2015). The left hemi-
sphere of each brain was analyzed, with the right hemisphere
having been prepared by the NIH NeuroBioBank for histolog-
ical analysis and thus unavailable for DNA sampling. Because
these brains represent shared resources, many cortical regions
had already been extensively sampled, especially primary mo-
tor cortex, primary somatosensory cortex, hippocampus, and
other regions, and thus were unavailable for our analysis. These
unavailable regions are indicated on the cortical maps in areas
with no color shading and outlined with gray dashed lines out-
lining the representative BA regions and their unavailability.

The left hemispheres of each sample were sectioned coro-
nally at ≈1 cm, according to neuropathological conventions and
standard operating procedures. Approximate coronal section
thicknesses were measured for coronal sections available for
sampling (Fig. S3A). Samples were requested from all cerebral
cortical BA regions available and identifiable, and from most if
not all subcortical and non-cortical brain sites as well. Biop-
sies of cortical areas were cut by dieners at the NIH Neuro-
BioBank, using extensive photographic maps and atlases of the
human brain, recording the position of the sample relative to gy-
ral landmarks, and the section number. Assignment of samples
to BA regions comes from this biopsy process. Furthermore,
photographs of coronal sections and tissues were taken before
and after dissection for lucida tracing of biopsy locations within
the coronal sections. Tissue samples are stored at -80°C until
sample preparation. Sample preparations for bulk DNA extrac-
tion are as described before (Lodato et al., 2015; Bizzotto et al.,
2021). Biological duplicates for BA9, BA18, and BA17 were
isolated from the same tissue biopsy with the same protocol but
separately prepared.

Library preparation and WGS for variant calling
Deep WGS (210X) on bulk tissue DNA was prepared us-

ing the Illumina TruSeq PCR-free preparation kit for paired-
end barcoded WGS libraries. Paired-end sequencing (150 bp x
2) was performed on an Illumina HiSeq X10 (UMB4638 and
UMB4643) or NovaSeq6000 (UMB5575 and UMB5580) in-
strument (Psomagen, Inc., Rockville, MD).

As described previously (Bizzotto et al., 2021), single neu-
ronal nuclei were isolated using FANS with NeuN staining, a
neuronal nuclei marker. Single neuronal sequencing was pre-
pared by shearing 100 ng of DNA of each sample on a Covaris
Ultra-Sonicator to yield ≈350 bp fragments. Paired-end bar-
coded WGS libraries were prepared using the Illumina TruSeq
Nano LT sample preparation kit, and paired-end sequencing
(150 bp x 2) was performed on an Illumina HiSeq X10 instru-
ment. Library preparation and sequencing were completed at
the New York Genome Center (New York, NY). Sequencing
data of ten single prefrontal cortex neurons from each brain,
which were selected based on low allelic and locus dropout
rates, were made available from a previous study (Bizzotto
et al., 2021).

Targeted amplicon sequencing of bulk DNA
In UMB4638 and UMB4643, we validated identified muta-

tions using deep amplicon sequencing in 37 brain samples and
18 non-brain tissues samples (Table S1.1). Candidate sSNVs
were selected based on parameters set by the amplicon design
pipeline requiring primers mapping to unique genomic regions.
Targeted regions were captured by the amplicon panel in bulk
unamplified DNA samples from both brain and non-brain tis-
sues (Table S1.1). Targeted sequencing of bulk DNA samples
was completed using a custom designed amplicon pool and
a custom library preparation and barcoding protocol. A cus-
tom amplicon panel for each individual was designed to target
specific candidate sites using the Ion AmpliSeq Designer tool
(Thermo Fisher Scientific). Each amplicon pair was designed
to be unique and specific to a target candidate site. The am-
plicon panel was used in the initial targeted capture step with
minimal PCR cycles to reduce artifacts from PCR amplifica-
tion. The initial input amount of DNA was 20 ng per reaction,
consisting of 9 µL of 2X custom AmpliSeq Primer Pool and
10 µL of 2X Phusion U Mastermix (Thermo Fisher Scientific,
F-562). Targeted amplicon sequencing of bulk tissue DNA was
prepared using a custom library prep protocol for paired-end
barcoded WGS libraries. Paired-end sequencing (150 bp x 2)
was performed on an Illumina HiSeq X instrument. Library se-
quencing was completed by Psomagen, Inc. (Rockville, MD).

For all targeted captures using the custom amplicon panel,
two biological duplicate bulk DNA samples representing two
separate extractions from the same tissue region were used.
For technical replicates, each biological duplicate was prepared
three times, for a maximum of 6 samples for each evaluated
tissue. For controls, preparations were also performed using
1) nuclease-free water, 2) an unrelated male fibroblast genomic
DNA sample (Promega, G1471), and 3) DNA from the other
individual (i.e., using the custom panel specific to UMB4643
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on UMB4638 bulk DNA). Specifically, regarding the region-
validation experiments, the following samples for BA17 and
BA18 were used: bulk tissue DNA samples used for the origi-
nal sSNV detection, and a biological duplicate sample extracted
similarly from the same tissue but not used for candidate sSNV
discovery. For PFC, two biological duplicate samples were ex-
tracted similarly from within the same BA9 region; this exact
BA9 tissue biopsy was not used for the original SNV detec-
tion. Custom amplicon panels were also used to target sSNVs
in additional bulk DNA samples extracted from both brain and
non-brain tissues.

Bioinformatic methods for variant calling
Definitions

Mosaic fractions (MFs) are defined as twice the alternate al-
lele fraction (2 x AAF), expressed as an average if multiple am-
plicons in MIPP-seq were designed to target the sSNV. Follow-
ing convention, we define mild and extreme outliers as obser-
vations that are respectively 1.5-3 and at least 3 interquartile
ranges (IQRs) beyond the upper (q1) and lower (q3) quartile
values. For reference, the IQR is measured as the difference
between the lower and upper quartiles. Mathematically, mild
outliers are observations (x) that satisfy x < q1− [1.5, 3]× IQR
or x > q3 + [1.5, 3] × IQR, whereas extreme outliers satisfy
x < q1 − 3 × IQR or x > q3 + 3 × IQR, where IQR = q3 − q1.

Statistical analysis
Statistical analysis, including counts, averages, and statistical

tests are reported in figures and tables. Statistical analyses were
performed in Microsoft Excel, Python, and R.

Whole-genome sequencing data processing and filtering
WGS reads generated from single neuronal sequencing were

processed as previously described (Bizzotto et al., 2021). WGS
reads from bulk tissue sequencing were prepared, in brief, by
mapping reads on to the human reference genome (GRCh37) by
Burrows-Wheeler Aligner (BWA) with default parameters. Du-
plicate reads were marked with MarkDuplicate of Picard tools
(Broad Institute, 2019) and further post-processing was com-
pleted with local-realignment around indels and base-quality
score recalibration using Genome Analysis Toolkit (GATK,
version 3.5) (McKenna et al., 2010).

Somatic single nucleotide variant calling
sSNVs in bulk and single cell DNA WGS was called using

MuTect2 (bulk calling) (Cibulskis et al., 2013), MosaicFore-
cast (single-cell and bulk calling) (Dou et al., 2020), single-
cell Mosaic Hunter (single-cell and bulk calling) (Huang et al.,
2020, 2017), and a GATK-based triple-calling strategy (single-
cell calling) (Lodato et al., 2015), as previously described.
sSNV calling in bulk DNA WGS using MuTect2 (version
nightly− 2016− 04− 25− g7a7b7cd) utilized the panel of nor-
mal tissue approach to complete a tissue-region versus tissue-
region comparison to isolate for region-specific calls, promis-
ing greater sensitivity in detecting regional mutations. All calls
(pass and non-pass) from MuTect2 were considered in order

to increase sensitivity and minimize the loss of potentially rare
sSNVs. All other sSNV detection parameters, along with the
associated filter thresholds, for the other call-sets were as pre-
viously described (Bizzotto et al., 2021; Lodato et al., 2015;
Dou et al., 2020; Evrony et al., 2015). The total sSNVs derived
from all calling methods were then filtered for somatic muta-
tions unique to each individual by excluding variants shared
between both individuals. Variants located in segmental du-
plications and repetitive regions were also filtered out before
designing the amplicon panel for targeted re-genotyping.

Estimating the ratio of the number of variants detected in one
region versus another

Comparisons of the number of mosaic variants found in one
brain region must take into account several technical factors.
Mosaic variant discovery pipelines can exhibit different sensi-
tivities based on the AAF of desired variants; for example, the
sensitivity to detect mosaic variants at AAFs of <5% is signifi-
cantly lower than for variants at AAFs in the 5-30% AAF range
(Bizzotto et al., 2021). Higher-AAF variants can be shared
across multiple brain regions, and brains can vary in the total
number of variants discovered due to batch effects or sequenc-
ing platforms. Thus, we sought to estimate the ratio of vari-
ants present in BA17 versus BA8 (and similarly for BA9 versus
BA17 or BA18), as a ratio would summarize a fundamental dif-
ference in the variants found in one region versus another due to
one region having more region-specific variants or having vari-
ants at significantly higher AAFs. If two regions share a similar
number and set of variants, then we assume that a variant de-
tected in one of those regions would be found at a similar AAF
in the other region. This latter case serves as our null model
against which we can use to test whether the estimated ratio of
variants in one region over another is significant.

In each of seven different AAF bins (1-2%, 2-3%, 3-4%, 4-
5%, 5-10%, 10-20%, and 20-50%), we simulated the minimum
number of sequencing reads at which we would detect a variant
in the bin based on the AAFs of all variants found in this bin
(our “threshold”). For each variant in each region, we simulated
the number of sequencing reads at which it would be detected in
that region as a binomial random variable with N equal to 250
reads and p equal to the AAF at which the variant is found in
the region, and we retained the variant if the simulated number
of reads exceeds that of our threshold. We estimated the pro-
jected number of similar variants that can be detected at the ob-
served variant’s AAF by computing the reciprocal of the sensi-
tivity estimated from a smoothed spline fitted to sensitivity esti-
mates previously published for MosaicForecast (Bizzotto et al.,
2021). To obtain the ratio of projected variants in that region,
we summed up the numbers of projected variants; this sum is
used to compute the ratio of variants that exist in one region ver-
sus another. The ratio under the null model is estimated with a
similar procedure, except a particular variant’s AAF in a region
is simply the mean of the AAFs across all tested regions. For
example, a variant detected at AAFs of 2% in BA17 and 1%
in BA18 in the same brain would be simulated at an AAF of
1.5% for the control. Simulations were conducted over 1000
iterations, and the 99% confidence interval was computed to
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provide an interval estimate of the ratio

Analysis of amplicon sequencing data
Sequencing reads were prepared by first trimming the reads

for quality and removing any leftover adapter sequences from
the reads using CutAdapt (Martin, 2011) (−q 20, −u −5, −U −
5, −a AGATCGGAAGAGC − A AGATCGGAAGAGC).
Next, common sequencing artifacts were corrected using the
Pollux software (Marinier et al., 2015) to generate both error-
corrected and original fastq files using the following settings:
−p − n true − d true − h true − s f alse − f f alse.

Reads were then mapped onto the human reference genome
(GRCh37) by BWA-mem with default parameters. Fur-
ther post-processing was completed with local-realignment
around indels using Genome Analysis Toolkit (McKenna
et al., 2010)] (GATK, version 3.7, −T IndelRealigner −

− f ilterbasesnotstored −greedy 1200 −maxReads 2000000 −
maxInMemory1500000), using all InDels from gnomAD ver-
sion 1 (Karczewski et al., 2020) as a control set. Finally, all
primer binding sites were clipped from the sequencing reads us-
ing Bamclipper 93 and a bed file of all primers. Variants located
within each amplicon were called using samtools mpileup ver-
sion 1.3.1 (−−output−tags INFO/AD,DP, AD −Q 20 −q 20)
(Li, 2011). SNV variants were called alternate or reference us-
ing samtools mpileup (Li, 2011). Finally, VCFs for each sample
were processed to include 50 nucleotides flanking each side of
the targeted mutation for estimating the background error rates.

All variant calls were further validated to distinguish TPs
from FPs and germline events using a combination of public
databases (gnomAD version 3.92), manual review of genome
mappability, control tissue sequencing, and the comparison of
the original tissue in which a mutation was identified against
other tissues in the individual. True positive mutations were de-
fined as being high quality sites with good mapping, rare/absent
in gnomAD version 3.92, absent in control DNA samples, al-
ternate allele fraction (AAF) of 0.5% - 35%, and an allele depth
(AD) > 2. Furthermore, the high confidence mosaic alleles
were required to be detected within the tissues where they were
originally identified. However, given some variability in ampli-
con sequencing depths, mutations not detected in the original
tissue can also be considered as valid mutations given that they
meet all other criteria and are present in multiple library prepa-
rations. Mutations additionally identified with an AAF sugges-
tive of a germline event in control DNA samples (Promega ge-
nomic control and unrelated individual’s brain tissue), that ap-
pear as common high-quality germline events in gnomAD ver-
sion 3 (Karczewski et al., 2020) with good read mapping, were
flagged as true germline events. Alleles present in the control
tissues, regardless of AAF, that are present in gnomAD ver-
sion 3 (Karczewski et al., 2020), with poor quality flags and
poor read mapping were further manually curated to confirm
their FP status. Finally, any mutation consistently identified as
a germline event across all tissues of a given individual, with
an average AAF of 40-60% across all samples, were manually
reviewed and classified as a true germline event.

Figures for lucida tracings and brain maps with Brodmann area
annotations

Lucida tracings of sampled cortical sections (Figure S3A)
were traced from photographs taken by the NIH NeuroBioBank
at the time of tissue biopsy. Dashed lines indicate regions
not present in photographs due to sampling prior to this study.
Anatomy was extrapolated from records of sample locations,
adjacent sections, photographs of right hemisphere formalin-
fixed coronal sections, and atlases and MRI records of neuro-
logically normal brain anatomy.

Lateral and medial cortical brain maps with Brodmann area
annotations were adapted from the Brodmann (1909) areas (an-
notated) scene files for the left cortical hemisphere from the
Brain Analysis Library of Spatial maps and Atlases (BALSA)
database (Van Essen et al., 2017). Areas that are filled with
color represent the corresponding MF of the sSNV in that BA
sample.

Generation and analysis of panel single-cell multiple dis-
placement amplification (pscMDA) data
Alignment and genotyping of cells from pscMDA

We used multiple displacement amplification (MDA) to cap-
ture 122 brain-restricted sSNVs (56 for UMB4638 and 66
for UMB4643) across 1131 single nucleus genomes (563 in
UMB4638 and 568 in UMB4643) taken from BA17, BA18,
and BA9. We used cutadapt 90 with error rate set to 50% to
aggressively trim adapters, partial adapter sequences, poly-G
sequences, and polyX-sequences from demultiplexed FASTQ
files of the pscMDA experiment. We aligned all reads to hg19
(GRCh37) using bwa-mem. We genotyped each mutation in
our panel from the FASTQ data using procedures described be-
fore 16. Briefly, the genotyping model assumes that the poste-
rior probability of a site being somatic-mutant in a cell can be
computed from a binomial likelihood of observing alternative-
allele backing reads at observed counts at probability p, i.e.,
the expected read fraction of a somatic-alt variant in the cell
(ideally at 0.5 but potentially different given allele imbalances
introduced during amplification). The posterior probability of
a site being non-mutant at a site is also computed from a bino-
mial likelihood of observing erroneous (i.e non-reference) reads
at the site. The prior probability of a site’s genotype within a
given cell is proportional to the observed read fraction of the
mutant allele across all cells.

All parameters are estimated from heterozygous SNPs intro-
duced in the panel and off-target amplifications that serve as
examples of reference-homozygous sites. For instance, ampli-
fications of UMB4643 sites in UMB4638 samples were used to
estimate parameters for the reference-homozygous genotype in
UMB4638. The two batches of sequencing data for the same
cells and sites were genotyped separately before generating a
consensus genotype matrix, using the estimated cell fraction
of the variant to compute a binomial probability of the variant
being somatic-mutant within a given cell across both batches.
All parameter fittings were conducted using JAGS implemented
through R, and code to genotype cells and sites is provided on
the repository linked under the linked repository. We genotyped
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>85% of the sites across 1124 nuclei (Figure S2A, S2C), with
cell fractions of each variant correlated closely with the MFs es-
timated from the AAFs measured by deep targeted sequencing
of these variants (Figure S2B).

Construction of lineage trees
We assume that mutations evolve neutrally within the lineage

(i.e., negligible chance of recurrent mutations newly arising
on separate branches of a lineage tree without being inherited
from a common ancestor). We applied scistree (Wu, 2020) to
our consensus genotype matrix to filter out genotypes with this
model (for example, for two sites [A, B], subpopulations exist
with genotypes [0, 1], [1, 0], and [1, 1]) and impute compati-
ble genotypes constrained by variants’ cell fractions. We used
mpboot (Hoang et al., 2018) to construct maximum parsimony
trees from this imputed genotype matrix. Genotype matrices
from before and after imputation are reported in Fig. S2A.

Coalescent model for inferring variant origin timings and time
elapsed during the observed lineage

We sought to infer the coalescent time of the entire popu-
lation, which is the time elapsed between the population from
which we have sampled our cells and its most recent common
ancestor (MRCA). A population may develop from its MRCA
depending on several parameters: mutation rate, fluctuations
in population size over time, division rate (or birth and death
rates), selection for specific mutations, and any other popula-
tion structure (for example, migration or spatial segregation of
the population). A phylogenetic tree represents the genealogi-
cal relationships of cells produced under these conditions, and
a number of phylogenetic trees may be constructed to describe
the different genealogies possible under the population parame-
ters (given that we may end up observing a unique set of muta-
tions or cells when sampling from the population). In any such
tree, a node at which a tree branches off into descendant nodes
is said to be the ancestral cell to those descendant cells, and
the descendants are said to “coalesce” at this ancestor when
we traverse up their branches to this ancestor. A mutation is
mapped to a branch immediately leading up to a node if we find
that cells descended from this node also carry the mutation.
Under an assumed mutation rate, branch lengths can indicate
the number of mutations mapped to them, which we assume
is Poisson-distributed. We can use the number of mutations
mapped to a series of branches connecting nodes to estimate
the time elapsed between these nodes, each of which may rep-
resent an independent coalescence event. The coalescent time
of the entire population is said to be the sum of all individual
coalescent times in the lineage, or the sum of times between
each coalescence event at which different portions of the pop-
ulation arrive at their common ancestor when traversing up the
lineage tree.

All mathematical and algorithmic details for fitting the co-
alescent model are provided with the attached supplement
(Supplemental Methods).

Calculating the regional restriction statistic
Coalescent timings were inferred and lineages were con-

structed agnostic to the regions where mutations were detected.
To assess each clade’s association with different regions, we
constructed the regional restriction statistic (RRS), which we
formalized as the log-odds ratio of the distance between two
cells in a clade belonging to the same region to the distance be-
tween cells from different regions. We envisioned this ratio as
describing whether two cells from a particular clade and from
the same region tend to be more closely related than if those
cells were from different regions. For each pair of cells within
each clade, we computed the ratio of the phylogenetic distance
between cells within the same region to the distance between
cells from different regions, and we estimated the mean and
standard deviation of the distance ratios for each clade. The
mean ratio is the RRS for a clade.

A RRS close to 1 suggests that cells within this clade are
equally related whether in the same region or in different re-
gions, suggesting that the variant’s dispersal throughout the cor-
tex is not significantly shaped by or associated with regional
separation. A RRS significantly above 1 suggests that cells in
this clade are more related to clade-mates within the same re-
gion than across regions, suggesting that the clade is restricted
mostly to one region or asymmetrically allocated to one region.
A RRS significantly below 1 suggests that clades are more re-
lated to clade-mates from different regions than within the same
region, suggesting that the clade widely populates other regions
early on prior to the occurrence of later-stage variants. A null
RRS can be defined using early-mosaic or germline mutations,
which should precede the formation of brain regions and sub-
sequent allocation of cells amongst them.

Mosaic characterization using ultra-deep targeted sequencing
(MIPP-seq)
Preparation and capture of target sites using MIPP-seq

Mosaicism estimation of bulk tissue DNA was obtained us-
ing deep-targeted sequencing of regions captured by custom-
designed primers, as described in a recently published method
36. When possible, ≥1 unique primers (termed “replicate
primer pairs”) were designed to a SNV, with each additional
replicate primer designed to stagger around the site of interest;
this is to account for potential allelic dropout and imbalance,
and to provide a more accurate mosaicism estimation of the tar-
geted SNV. Every primer pair was designed with a sequencing
adapter and unique barcode. Each primer pair was individually
evaluated for a single expected product of correct fragment size
and checked for efficiency. Custom-made multiplexed primer
pools were generated and checked for primer cross-reactivity
and capture efficiency. In brief, primer pairs were evaluated
both independently and in pools, which were compared on
a Tapestation D1000 ScreenTape system to check for proper
product sizes. Replicate primer pairs targeting the same sites
were placed in separate pools or used individually. Primer pairs
that showed cross-reactivity with other primer pairs within a
pool, such as abnormal fragment sizes, were isolated and ran in
individual reactions as previously described 36.
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The targeted sequencing was prepared by running a PCR
with the primer pairs and 50 ng of bulk DNA input on low cy-
cle number (20 cycles) (Doan et al., 2021). Libraries were pre-
pared, and sequencing was performed on the Ion Torrent S5 se-
quencing platform. A calculation using an estimated 6-7 pg of
DNA content per cell approximate ≈7,142-8,333 cells (Bäumer
et al., 2018). Using this estimation, sSNVs with 0.1% MF, the
lower limit of detection by this method, would represent ≈7-8
cells in the cellular population carrying the heterozygous sSNV.

MIPP-seq data processing, filtering, and analysis
Raw unmapped BAMs consisting of uniquely indexed ampli-

con sequences were converted to fastq using “bedtools bamto-
fastq” (Quinlan and Hall, 2010) prior to being demultiplexed
into amplicon-specific fastq files based on their unique 15 nt
barcodes with FASTX toolkit’s f astx barcode splitter (− −
bol − −mismatches 3). Error correction was performed us-
ing Pollux (Marinier et al., 2015) (−n f alse − d f alse −
h true − s f alse − f f alse), followed by barcode and quality
trimming with CutAdapt (Martin, 2011) (−u 10 − q 10). Each
amplicon specific fastq was independently mapped against the
human reference genome, hg19, using default settings in BWA-
mem. Local realignment was performed using GATK version
3.7 IndelRealigner (McKenna et al., 2010) (−greedy 1200 −
maxReads 2000000 − maxInMemory 1500000) using high
quality indels extracted from the gnomAD genomes database.
Finally, primer binding sites were clipped using the bamclipper
tool (Au et al., 2017) with default settings.

Each locus site in each amplicon was evaluated as carrying
the alternate allele if it met the following criteria: 1) a minimum
of 10,000 reads at the site of interest; 2) carrying the primary
alternate allele called during initial variant discovery; and 3)
the mosaicism at the given site is ≥0.1% MF (0.05% AAF).
AAF averages were reported for those SNV sites with multiple
(replicate) primer pairs. As previously described, the lower de-
tection limit of mosaicism estimation using 50 ng of DNA input
is 0.1% mosaicism (0.05% AAF) (Lodato et al., 2015). For the
graphical presentation of mosaicism on the brain map figures,
any sites with <0.1% mosaicism or carrying the reference al-
lele, but passed the minimum total read limit (10,000 reads per
site), were categorized as “alternate allele absent” for that tis-
sue (represented as the shaded gray areas on the brain maps).
If a given site yielded <10,000 reads at the site of interest, it
was designated as inconclusive (represented as non-shaded ar-
eas with gray dashed lines on the brain maps).

Background error rates (Fig. S3C) were calculated as pre-
viously described (Lodato et al., 2015). In brief, background
error rates of mutations were calculated using the average al-
lelic fractions within 100 bases surrounding the targeted SNV
in each amplicon. This represents the likelihood of generating a
mutational artifact. If multiple (replicate) primer pairs were de-
signed to the target site, then an average background error rate
was calculated for that specific SNV across the relevant primer
pairs.

All sSNVs followed for subsequent spatial mosaic analy-
sis had background error rates below the lower technical limit

for signal detection (0.1% MF), indicating the level of sensi-
tivity provided by MIPP-seq (Table S3.2). A comparison of
all sSNVs in biological duplicates of the same cortical areas
shows that most sSNVs have similar MF values across biolog-
ical replicates (Table S3.3, Fig. S3D). In all, 32 sSNVs and
27 sSNVs were studied for UMB4638 and UMB4643, respec-
tively.

Grouping of SNVs into somatic and germline categories
SNVs were grouped into somatic (ultra-low mosaic, low mo-

saic, and higher mosaic) or germline categories based on the
average mosaicism (2 × alternate allele fraction (AAF)) per-
cent of a SNV across all evaluated samples. Grouping was also
further confirmed by the mutation categorization completed by
targeted amplicon sequencing (see Table S1.2). SNVs with an
average AAF of ≥45% to 50% for a heterozygous SNV were
grouped as germline mutations. Somatic mutations were cate-
gorized as higher mosaic sSNVs if the average mosaicism was
between 10-90% MF. Low mosaic sSNVs carry a mosaicism
of 2-10%. This category range is based on the lower limit of
detection (10% MF) for standard sequencing technologies for
mosaic mutations, including Sanger sequencing, pyrosequenc-
ing, and standard exome sequencing. Ultra-low mosaic sSNVs
are sSNVs with an average mosaicism of ≤2% across all eval-
uated tissues. A previous study demonstrated the appearance
of general restrictions within the cortex beginning at 4.3% mo-
saicism for heterozygous SNVs isolated from BA9, with mu-
tations at >5% mosaicism appearing widely outside the brain
(Bizzotto et al., 2021). An additional study evaluating early
human development using early-occurring sSNVs showed that
brain-specific progenitors produced clones with average MFs of
<2.5% across the cortex in one individual (Dehay et al., 1993).

Analyses of MIPP-seq data across multiple cortical regions
Starting with an m × n MP matrix containing m mosaics and

n tissues, we used the function get summary stats() in the R-
package “rstatix” to compute summary statistics for each mo-
saic, which include interquartile ranges (IQRs), and upper (q1)
and lower (q3) quartile values. For reference, the IQR is mea-
sured as the difference between the q3 and q1. The outliers
for each tissue were identified using the identi f y outliers()
function in the R-package “rstatix”. Following convention,
we define mild and extreme outliers as observations that are
respectively 1.5-3 and at least 3 IQR beyond the upper (q1)
and lower (q3) quartile values. Mathematically, mild outliers
are observations (x) that satisfy x < q1 − [1.5, 3] × IQR or
x > q3 + [1.5, 3] × IQR, whereas extreme outliers satisfy
x < q1 − 3 × IQR or x > q3 + 3 × IQR, where IQR = q3 − q1.

Because we consider the mosaic data to be paired across tis-
sues, we considered using a 1-way repeated measures analy-
sis of variance (ANOVA) using the functions aov() package
“stats”. The four assumptions for ANOVA include 1) indepen-
dence of observations, 2) no significant outliers, 3) normality,
and 4) homogeneity of variances. Due to the tissue sampling
methods and nature of SNVs, the observations were consid-
ered independent. Outliers were identified as above. Normal-
ity was verified via QQ plots (using function ggqqplot() in R-
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packages “ggpubr” and “ggplot2”) and the Shapiro-Wilk test
using the shapiro test() function in the R-package “rstatix”.
Homogeneity of variances was verified (not shown in data) us-
ing the levene test() function in the R-package “rstatix”. As
the above assumptions for ANOVA were violated, it was nec-
essary to perform a non-parametric analysis of variance with
Friedman’s test, by using the f riedman test() function in the
R-package ”rstatix”.

Post hoc analysis was conducted for all tissue pairs, in-
cluding biological replicates in BA9, BA18, and BA17. The
shapiro test() function was once again used to determine if
the difference in mosaic fractions between tissue pairs was nor-
mally distributed, to determine whether to use the t.test() func-
tion (R-package “stats”) for the paired t-test (if normally dis-
tributed) or the wilcox.test() function (R-package “stats”) for
the Wilcoxon Signed Rank test (if not normally distributed).
The Benjamini-Hochberg procedure was performed to reduce
the false discovery rate (FDR) in the multiple comparisons, by
using the p.ad just() function in the R-package “stats”.

The correlation of mosaics between tissues was determined
using the cor() function in R-package “stats”. However, the
paired nature of the mosaic fractions between tissues, and the
wide variability of mosaic fraction values between sets of mo-
saics, resulted in spuriously high correlation coefficients. Fu-
ture work will require normalization of data to account for the
variability of mosaic fraction prior to performing correlation.

Additional R packages, UpsetR (Conway et al., 2017) and
core Tidyverse packages (Wickham et al., 2019), were used for
figure generation.

Analysis of cell types using single-nucleus (sn)RNA-seq and
snATAC-seq data
snRNA-seq and snATAc-seq processing and analysis

snRNA-seq 10X Chromium Genomics datasets (Zheng et al.,
2017) were prepared from three different cortical areas from
UMB4638 and UMB4643. 10X single nuclei RNA sequenc-
ing data was generated from sorted cells using either DAPI or
NeuN (neuronal nuclei marker) from the BA17 and BA18 ar-
eas from both individuals. Previously published DAPI-sorted
snRNA-seq libraries from BA9 were also analyzed from both
individuals (Bizzotto et al., 2021). In total, 72,839 cells were
analyzed between both individuals.

We processed snRNA-seq data through CellRanger version
4.0.0 from the 10X website, and we aligned cells to an hg19
ENSEMBL version 17 reference. We ran cellranger count for
each sample to produce BAM files and per-sample features,
barcodes, and counts matrices and cellranger aggregate to pro-
duce a combined set of matrices. We ran Garnett (Pliner et al.,
2019) on default settings to annotate cell types in our aggre-
gated genes-to-cells counts matrix, using markers for 16 differ-
ent neuronal, glial, and non-brain-cell types downloaded from
the Allen Brain Atlas (Hodge et al., 2019). We used label trans-
fer to annotate the snATAC-seq data based on snRNA-seq an-
notations using Seurat (Stuart et al., 2019).

Inference of snRNA-seq clades and excitatory/inhibitory popu-
lations

In snRNA-seq data, at the sites of sSNVs with alternative
alleles known from our WGS experiments, each cell reported
average coverage of 1-4 reads per site in snRNA-seq (maximum
64 reads per site) and between 1-2 reads supporting the somatic
alternative allele (maximum of 16; Fig. S5A-B). Between 4-
27% of cells tagged at least one somatic variant’s alternative
allele, and ≈10-20% of all cells sequenced per cell type reported
coverage at a somatic alternative allele (Fig. S5D).

We grouped single cells from our snRNA-seq and snATAC-
seq datasets based on shared, identifiable somatic variants. We
constructed a genotype matrix for 12,381 total single cells
(8,279 in UMB4638 and 4,102 in UMB4643) across both
brains’ snRNA-seq and snATAC-seq datasets and applied Lou-
vain clustering to identify 82 groups in UMB4638 and 83 in
UMB4643, with cells in cluster sharing one or more common
variants (Fig. S5F). We estimated the cell type composition of
each cluster to identify patterns using annotations provided by
Garnett.

Given the coverage of somatic mutations in our single-cell
transcriptomic and chromatin accessibility datasets, we sought
to identify clusters of cells that share common sets of variants
and identify their cell type compositions. We constructed an
adjacency matrix that reports the number of variants shared by
each pair of cells, and we applied Louvain clustering to iden-
tify groups of cells that share common variants. Each Louvain
cluster represents a set of cells that shares a common set of
variants and any other variants that might be represented exclu-
sively within a subset of those cells.

Garnett’s annotations were used to mark the compositions
of cell types within individual Louvain clusters. However, due
to technical constraints on single-cell sequencing, significant
variation exists in the number of cells within each cluster (be-
tween 21-210) with a significant number of clusters consisting
of only a single cell. Thus, the estimated percentage of a cell
type within a small cluster would be more prone to fluctuations
in the cluster size than would an estimate for a large cluster. We
employed empirical Bayes methods to generate an estimate of
cell type compositions while controlling for cluster size and the
number of variants represented in the cluster (Robinson, 2017).

We focused on the proportions of excitatory and inhibitory
neurons. We modeled the number of cells in each cluster of size
N coming from a cell type as a beta-binomial random variable,
in which the observed number of cells X depends upon parame-
ters µ and σ. For each cell type, we used beta-binomial regres-
sion through the “aod” package to regress the X and N − X on
the number of variants represented in the cluster and the log10
cluster size. This regression model yielded estimates of µ0 for
each cluster and a shared σ0, both of which were used to gener-
ate a prior distribution of cell type composition for each cluster.
The posterior estimate of cell type composition was derived by
computing
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Post. Prob. =
α0

α0 + β0 + N
(1)

α0 =
µ0

σ0
(2)

β0 =
(1 − µ0)
σ0

(3)

Lineage and cell-type annotation using PRDD-seq
Lineage clading and cell-type analyses of UMB4638 was

completed using PRDD-seq, as previously described (Huang
et al., 2020). We performed additional cell-type analysis us-
ing sSNVs in UMB4638 and UMB4643 with PRDD-seq, com-
pleted as described (Huang et al., 2020). Designated marker
genes used for cell-type and layer identification are described
in (Huang et al., 2020).

For Microsoft Excel and Python analyses
Analysis related to MF determination and background error

rates are as previously described 17. Work was initially com-
pleted in Microsoft Excel, and later adapted to an automated
Python/Perl workflow that processed data in a high through-
put manner. Briefly, all sites were first checked to ensure they
meet the minimum QC metrics described above (e.g., ¿10,000X
depth, and detected alternate allele matches expected alternate
allele from WGS). Next, the AAF at the variant position was ex-
tracted for each amplicon, with the average and 95% confidence
interval being calculated for each variant using the 2+ inde-
pendent amplicons, if applicable. Next, background error rates
for each amplicon were measured as the average AAF across
the flanking 100 nts proximal to the target variant, and aver-
ages and confidence intervals for error rates were further calcu-
lated across replicate amplicons. Finally, the average AAFs of
the targeted variant were directly compared against the average
background errors using a t-test. To ensure that error correction
using Pollux did not introduce any errors in the data, assess-
ments were performed using both the original (i.e., uncorrected)
and error-corrected sequencing data.
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